
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang, Department of Computer Science and Information

Engineering, Chang Gung University

● System Initialization and Memory Management

● Power Management Techniques and System Routine

● Embedded Linux Labs and Exercises on Android

● Embedded System Design Concepts

● Embedded System Developing Tools and Operating Systems

● Embedded Linux and Android Environment

● Real-Time System Design and Scheduling Algorithms

● System Synchronization Protocols

 Introduction

 Embedded Software Development Process

 Embedded Software Architecture

 Embedded System Initialization

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Developing a “Hello World” application on an

embedded system is not trivial

◦ As compared with developing in a PC platform

 First, we have to understand how to boot the target

system, i.e., the booting process

◦ How to load the image onto the target system?

◦ What is the memory address to load the image?

◦ How to initiate program execution?

◦ How the program produces recognizable output?

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Host System
◦ Cross compiler, linker, and source-level debugger

 Target Embedded System
◦ Dynamic loader, linker, monitor, debug agent

 Potentially Connectivity Solutions
◦ Use serial port, BDM/ICE JTAG, Ethernet

◦ Download program images from the host system to the target
system

◦ Transmit debugger information between the host debugger and
the target debug agent

BDM: Background Debug Mode, JTAG (Joint Test Action Group)

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Source: Qing Li and Caroline Yao, “real-time concepts for embedded systems”

 Native Development

◦ Programmers develop and execute applications in the same

environment

 Embedded Development

◦ Conduct the cross-platform development

◦ Understand the target system layout

◦ Store the program image on the target system

◦ Load the program image during runtime

◦ Develop and debug the system iteratively

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Compiler and assembler produce object files that

contain both machine binary code and program data

 Linker takes these object files and produce

◦ An executable image

◦ Or an object file for further linking

 Linker command file instructs the linker process

 Make utility facilitates an environment of building

process

 Archive utility concatenates a collection of object files

to form a library

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

C/C++ Source and

Header Files (e.g.,

*.c, *.cpp, *.h, *.hpp)

Assembly Source and

Header Files (e.g., *.s,

*h)

Linker Command File

and Scatter File

(e.g., *.lnk)

Makefile

Preprocessor

Compiler Assembler

Make Utility

Object Files

(e.g., *.o)

Linker and Locator
Library Files

(e.g., *.a *.lib)

Archive Utility

Relocatable File

(e.g., *.o, *.a)

Shared Object File

(e.g., *.o, *.a)

Executable Image (e.g.,

*.elf, *.coff, *.out

Link Map File (e.g.,

*.map)

 Combine multiple object files into

◦ A larger relocatable object file

◦ A shared object file

◦ An executable file

 However, in a source file, it may access another variable or

call a function in another source file

 The compiler creates a symbol table in object file which

contains the symbol name to its address mapping

◦ Global symbols defined in the file being compiled

◦ External symbols referenced in the file that the linker need to resolve

 The linker process involves symbol resolution and symbol

relocation

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Symbol Resolution
◦ Resolving references across symbols

◦ Merging multiple symbol tables into one

 Relocation
◦ Performing section merge

◦ Resolving all resolvable relocation

◦ Replacing symbolic references with actual addresses (binding)

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

A

B

C

D

A

B

C

D

Variable A Variable B Variable C Variable D

Table 1 Table 2

 Object file format

◦ The manner in which the information is organized

 Two common object file formats

◦ COFF: Common Object File Format

◦ ELF: Executable and Linking Format

 Understanding the object file format

◦ Allow embedded developers to map an executable image into

the target embedded system for static storage, as well as for

runtime loading and execution

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 An object file contains
◦ General information about the object file

 File size, binary code and data size, source file name

◦ Machine-architecture-specific binary instructions and data
◦ Symbol table and the symbol relocation table
◦ Debug information for the debugger

 A compiler organizes the compiled program into sections
◦ Default sections
◦ Developer-specified sections

 Sections may contain
◦ Binary instruction
◦ Binary data
◦ Symbol table
◦ Relocation table
◦ Debug information
◦ Load address
◦ Run address

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 An embedded software may be stored in ROM

 However, loader may copy the initialized data and code to

the RAM

◦ Modified data must reside in RAM

◦ For faster execution speed, programs must execute out of RAM

 Load address: the address in ROM

 Run address: the location where the section is at the time of

execution

◦ Linker uses the run address for symbol resolution

 Load address may be the same as the run address

◦ Embedded software are directly downloaded to the memory for

immediate execution

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

LOAD_ROM 0x0000 0x8000

{

ROM 0x0000 0x8000

{

part1.o (+RO)

}

SRAM 0x8000 0x8000

{

part2.o (+RO)

}

DRAM 0x200000 0x400000

{

* (+RW, +ZI)

}

}

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Instructions are kept in

ROM

Critical instructions are

moved to SRAM

All data are moved to

DRAM

 Image Transfer from the Host to the Target System

 Target System Tools

 Target Boot Process

 Target System Software Initialization Sequence

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Loading Process: transfer an executable image from the

host onto the target

◦ Programming the image into EEPROM or flash

◦ Downloading the image over a serial (RS-232) or network

connection

 Host: a data transfer utility

 Target: a loader, a monitor or a debug agent

◦ Download the image through either a JTAG (Joint Test Action

Group) or BDM (Background Debug Mode) interface

 For the final product, the embedded software is stored

in ROM or flash

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 If a system has both ROM and flash
◦ Set jumpers to control which memory chip the processor uses

to start its first set of instructions upon reboot

 However, the final product method is impractical
during the development stage
◦ Reprogramming the EEPROM or the flash memory is time

consuming

 Solution
◦ Transfer the image directly into the target system’s RAM

memory

◦ Achieved by

 Serial or network connection

 JTAG or BDM solution

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Image Transfer from the Host to the Target System

 Target System Tools

◦ Embedded Loader

◦ Embedded Monitor

◦ Target Debug Agent

 Target Boot Process

 Target System Software Initialization Sequence

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 At the early development phase, a common approach is
write a loader program for the target and use it to download
the image from the host system

 Embedded Loader
◦ Download the image from the host system to the target system

◦ The loader is often programmed into ROM

 To communicate with the host system to download the
image
◦ Require a data transfer protocol between the host utility and the

embedded loader

 Embedded loader may download the image to
◦ RAM memory

◦ Flash memory if the loader has the flash programming capability

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The downloading medium can be
◦ Serial port

◦ Network connection (Ethernet, FTP, TFTP protocols)

 However, before the loader can execute, there must be
a boot image to initialize the target

 Boot image
◦ Part of the ROM chip is occupied by the boot image

◦ Consist of the code that executes when the system powers up

 Initialize the required peripheral devices

 Initialize the memory system for downloading the image

 Initialize the interrupt controller and install default interrupt
handler

◦ Prepare the system to execute the loader

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 An alternative to the boot image plus embedded loader

is to use an embedded monitor

 Furthermore, embedded monitor enable developers to

examine and debug the target system at run time

 Thus, an embedded monitor

◦ Consists of boot image plus embedded loader

◦ Adds the interactive debug capability

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 How to help developer to examine and debug the target

system at run time?

 Solution:

◦ Embedded monitor defines a set of commands that can be

accessible through a terminal emulation program over the

serial line

 Download the image

 Read from and write to system memory locations

 Read and write system registers

 Set and clear different types of breakpoints

 Single-step instructions

 Reset the system

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Target debug agent, or debug agent

◦ Embedded monitor + visual source-level debug capability for

the host debugger

 Thus, a target debug agent must provide enough

information for the host debugger to provide visual

source-level debug capability

 For example, a debug agent has built-in knowledge of

the RTOS objects and services

◦ Allow the developer to explore such object and services fully

and visually

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Image Transfer from the Host to the Target System

 Target System Tools

 Target Boot Process

 Target System Software Initialization Sequence

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 We give an example to show an embedded system boot

process

◦ Note that, each embedded system may have its own booting scenario

 Assume

◦ The reset vector is contained in ROM and mapped to 0x00000h

 The codes are executed when an embedded system powers on

 Usually a jump into another part of memory space where the real

initialization code is found

◦ The loader is contained in flash and is mapped to 0x00040h

◦ A loader performs

 System bootstrapping

 Image downloading

 Initialization

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Power on or reset

◦ Processor fetch and executes code from 0x00000h

 Reset vector in ROM

 The code in reset vector is a jump instruction to 0x00040h

◦ Loader in flash

 The code in loader first initialize hardware to put the system

into a known state

◦ Processor registers are set with default value

◦ Disable interrupt

◦ Initializes the main memory and the caches

◦ Perform limited hardware diagnostics on those devices needed for its

operation

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Then, the loader optionally can copy itself from the

flash memory into the RAM

◦ Since RAM is faster than flash

 Besides, the loader must copy and reserve the

initialized and uninitialized data sections of loader from

flash to RAM

◦ Copy the content of the initialized data section (.data) to RAM

◦ Reserve spaces for unitialized data section (.bss) in RAM

 Keep .const section in flash or RAM

35
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The next step is to initialize the system devices
◦ Only the necessary devices that the loader requires are

initialized

 For example, network controller if loader uses network to
download image

◦ Fully initialization is left until the downloaded image perform
its system initialization

 Now, the loader can transfer the application image to
the target system
◦ Application image: kernel+ application code

◦ Application image may come from

 Read-only memory devices on the target

 The host development system

36
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

37
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

XIP: eXection In PlaceSnD: Store and Download

 Three image execution scenarios

◦ Execute from ROM while using RAM for data

◦ Execute from RAM after being copied from ROM

◦ Execute from RAM after being downloaded from a host

system

38
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

39
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Boot Sequence

1. The CPU’s IP register is hardwired to execute the first

instruction in memory, i.e., the reset vector

2. The reset vector jump to the first instruction of the .text

section of boot image

 Initialize the memory system (including the RAM)

3. The .data section is copied to RAM

4. Reserve space if RAM for the .bss section

5. Reserve stack space in RAM

6. Set SP register to the beginning of the newly created stack

40
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

41
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The boot loader transfers an application image from ROM
to RAM for execution
◦ The application image is usually compressed in ROM to reduce the

storage space required

 Boot sequence
7. Copy the Compressed application image from ROM to RAM in a

work area
8. Decompress and initialize the application image(1)
9. Decompress and initialize the application image(2)
10. Decompress and initialize the application image(3)
11. The loader transfers control to the image using a processor-specific

jump instruction
12. Recycle the memory area occupied by the loader and the work area

 May also reinitialize the SP to point to the memory area occupied by the
loader to use it as the stack space

42
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Image Transfer from the Host to the Target System

 Target System Tools

 Target Boot Process

 Target System Software Initialization Sequence

43
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Target image may consists of

◦ Board support package (BSP)

 A full spectrum of drivers for the hardware components/devices

◦ RTOS

◦ Other embedded modules

 File system, networking, …

◦ Applications

 Main steps to initialize the system

◦ Hardware initialization

◦ RTOS initialization

◦ Application initialization

44
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

45
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Power on-> reset vector -> boot image
◦ Initialize the minimum hardware required to get the boot image to

execute

◦ Steps 1 and 2 in the previous slide

 Starting execution at the reset vector

 Putting the processor into a known state by setting the appropriate
registers

 Getting the processor type

 Getting or setting the CPU’s clock speed

 Disabling interrupts and caches

 Initializing memory controller, memory chips, and cache units

 Getting the start address for memory

 Getting the size of memory

 Performing preliminary memory tests, if required

46
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Then

◦ Boot sequence may copy and decompress the sections of code

to RAM

◦ It must copy and decompress its data to RAM

 Finally, initialize other hardware components

◦ Step 3

 Initializing interrupt handlers

 Initializing bus interfaces, such as PCI, USB…

 Initializing board peripherals such as serial, LAN and SCSI

47
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Initial Boot Sequence

◦ Steps 1 and 2

◦ Mainly initialize the CPU and memory subsystem

 BSP Initialization Phase

◦ Also called hardware initialization

◦ Steps 1 to 3

48
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Initializing the RTOS
◦ Steps 4 to 6

◦ Initializing different RTOS objects and services

 Task objects

 Semaphore objects

 Message-queue objects

 Timer services

 Interrupt services

 Memory-management services

◦ Creating necessary stack for RTOS

◦ Initializing additional RTOS extensions

 TCP/IP stack or file system

◦ Starting the RTOS and its initial tasks

49
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Finally, transfer control to the application

◦ RTOS calls a predefined function implemented by the

application

◦ Then, the application software goes through its initialization

 Declared and implemented necessary objects, services, data

structures, variables, and other constructs

50
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

