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● System Initialization and Memory Management

● Power Management Techniques and System Routine

● Embedded Linux Labs and Exercises on Android

● Embedded System Design Concepts

● Embedded System Developing Tools and Operating Systems

● Embedded Linux and Android Environment

● Real-Time System Design and Scheduling Algorithms

● System Synchronization Protocols





 An RTOS is an abstraction from hardware and software 

programming

◦ Shorter development time

◦ Less porting efforts

◦ Better reusability

 Choosing an RTOS is important

◦ High efforts when porting to a different OS

◦ The chosen OS may have a high impact on the amount of 

resources needed
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 With Soft Real-Time Systems

◦ Missed deadlines are not fatal

◦ Often have a human in the loop

 Example:

◦ Multimedia applications

 If the frame-rate of a video clip is lower than 30 frame/sec, the 

user still can watch the video

◦ An automatic teller machine (ATM)

 If the ATM takes 30 seconds longer than the ideal, the user still 

won’t walk away
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 If the deadline is missed, data is permanently lost or 

people might get hurt

 Often, these systems are fully autonomous

 Examples:

◦ Air bag deployment

◦ Anti-lock brake system

◦ Nuclear power plant controller
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 Especially designed for real-time requirements

 Completely real-time compliant

 Often usable for simple architecture

 Advantage: 

◦ No or little overhead of computing power and memory

 Disadvantage: 

◦ Limited functionality

 Examples: 

◦ eCos, Nucleus, VxWork, QNX, uC/OS II
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 Extension of an OS by real-time components

 Cooperation between RT-and non-RT parts

 Advantages: 

◦ Rich functionality

 Disadvantage:

◦ No general real-time ability

◦ Need more computing and memory resources

 Example: 

◦ RT-Linux, Solaris
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Standard 

Operating System
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Real-Time Applications

Real-Time                                                 

Extension

Standard 

Operating System

Hardware

Applications



 Process Management

◦ Real-Time Scheduler

◦ Synchronization Mechanism

 Inter-Process Communication (IPC)

 Semaphores

 Memory Management

 Interrupt Service Mechanism

 I/O Management

 Development Environments
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 Manufacturer: Wind River System
◦ Largest player on the market

◦ Proprietary software

 Target Platforms:
◦ x86, MIPS, PowerPC, SPARC, ARM, …

 Application Examples:
◦ Transport systems: Airbus A400M, AH-64 Apache, 

BMW iDrive

◦ Spacecraft:  Phoenix Mars Lander (2008), Curiosity 
Rover (2012), Yutu Rover (2013)

◦ Robots and programmable controllers, networking and 
communication components, printers, copiers, and 
image processing
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 VxWorks consists of threads (called "tasks")

◦ VxWorks does not start at a main function

◦ Every global function can be called from the shell

 Every global function or variable is global to the whole 

system

 Every function can access to every memory location

◦ Every other global function and variable can be accessed

◦ Writing to a NULL pointer can corrupt the interrupt table

◦ Stack overflow can crash the system
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 What is RTLinux

◦ It is a hard real-time RTOS microkernel 

◦ It runs the entire Linux operating system as a fully preemptive 

process

 The Key Ideas

◦ To be hard real-time, the execution time of each component 

should be deterministic 

◦ Each real-time task can use only the device drivers with real-

time support

◦ Other tasks can use the whole functions of Linux and can not 

lock device without the monitoring of RTLinux
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 A priority scheduler that supports both a "lite POSIX" 
interface and the RTLinux API

 A timer which controls the processor clocks and exports an 
abstract interface for connecting handlers to clocks

 A module supports POSIX read/write/open interface to 
device drivers

 A module connects real-time tasks and interrupt handlers to 
Linux processes through a device layer so that Linux 
processes can read/write to RT components

 A package of semaphore which is used among real-time 
tasks

 A module shares memory between real-time components 
and Linux processes
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 The name is from micro-controller operating system, 
version 2

 µC/OS-II is certified in an avionics product by FAA in 
July 2000 and is also used in the Mars Curiosity Rover

 It is a very small real-time kernel
◦ Memory footprint is about 20KB for a fully functional kernel

◦ Source code is about 5,500 lines, mostly in ANSI C

◦ It’s source is open but not free for commercial usages

 Preemptible priority-driven real-time scheduling
◦ 64 priority levels (max 64 tasks)

◦ 8 reserved for µC/OS-II 

◦ Each task is an infinite loop
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 Deterministic execution times for most µC/OS-II 

functions and services

 Nested interrupts could go up to 256 levels

 Supports of various 8-bit to 64-bit platforms: x86, 68x, 

MIPS, 8051, etc.

 Easy for development: Borland C++ compiler and 

DOS (optional)

 However, uC/OS-II still lacks of the following features:

◦ Resource synchronization protocol

◦ Soft-real-time support
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Application Code (Your Code!)

Processor Independent

Implementations
•Scheduling policy

•Event flags

•Semaphores

•Mailboxes

•Event queues

•Task management

•Time management

•Memory management

Application Specific

Configurations
•OS_CFG.H

•Max # of tasks

•Max Queue length

•…

uC/OS-II Port for Processor Specific Codes

CPU

Software

Hardware

Timer



 Three System Tasks

 Ten Application Tasks Randomly Print Its Number
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Header File

Main() Function

IncludeStarting Point

TaskStart() task

Create

TaskStartCreateTasks()

Function
Invoke

…

Task() taskTask() taskTask() taskTask() taskTask() taskTask() task



#include "includes.h"

/*

************************************************************

CONSTANTS

************************************************************

*/

#define TASK_STK_SIZE 512

#define N_TASKS 10

/*

************************************************************

VARIABLES

************************************************************

*/

OS_STK TaskStk[N_TASKS][TASK_STK_SIZE];

OS_STK TaskStartStk[TASK_STK_SIZE];

char TaskData[N_TASKS];

OS_EVENT *RandomSem;
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void main (void)

{

PC_DispClrScr(DISP_FGND_WHITE + ISP_BGND_BLACK);

OSInit();

PC_DOSSaveReturn();

PC_VectSet(uCOS, OSCtxSw);

RandomSem = OSSemCreate(1);

OSTaskCreate( TaskStart,

(void *)0,

(void *)&TaskStartStk[TASK_STK_SIZE-1],

0);

OSStart();

}
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Entry point of the task

(a pointer to function)

User-specified data

Top of stack

Priority (0=hightest)



void TaskStart (void *pdata)

{

/*skip the details of setting*/

OSStatInit(); 

TaskStartCreateTasks(); 

for (;;) 

{

if (PC_GetKey(&key) == TRUE) 

{

if (key == 0x1B) { PC_DOSReturn(); }

}

OSTimeDlyHMSM(0, 0, 1, 0); 

}

}
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Call the function to 

create the other tasks

See if the ESCAPE 

key has been pressed

Wait one second



static void TaskStartCreateTasks (void)

{

INT8U i;

for (i = 0; i < N_TASKS; i++) 

{

TaskData[i] = '0' + i;

OSTaskCreate( 

Task,

(void *)&TaskData[i],

&TaskStk[i][TASK_STK_SIZE - 1],

i + 1 );

}

}
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Entry point of the task

(a pointer to function)

Argument:

character to printTop of stack

Priority



void Task (void *pdata)

{

INT8U x;

INT8U y;

INT8U err;

for (;;) 

{

OSSemPend(RandomSem, 0, &err); 

/* Acquire semaphore to perform random numbers */

x = random(80);

/* Find X position where task number will appear */

y = random(16);

/* Find Y position where task number will appear */

OSSemPost(RandomSem);

/* Release semaphore */

PC_DispChar(x, y + 5, *(char *)pdata, DISP_FGND_BLACK +DISP_BGND_LIGHT_GRAY);

/* Display the task number on the screen */

OSTimeDly(1);

/* Delay 1 clock tick */

}

}
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Randomly pick up the 

position to print its data

Print & delay



 Initialize the internal structures of µC/OS-II and MUST 

be called before any services

 Internal structures of µC/OS-2

◦ Task ready list

◦ Priority table

◦ Task control blocks (TCB)

◦ Free pool

 Create housekeeping tasks

◦ The idle task

◦ The statistics task
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 Save the current status of DOS for the future 

restoration

◦ Interrupt vectors and the RTC tick rate

 Set a global returning point by calling setjump()

◦ µC/OS-II can come back here when it terminates.

◦ PC_DOSReturn()
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 Install the context switch handler

 Interrupt 0x08 (timer) under 80x86 family

◦ Invoked by INT instruction
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 Start multitasking of µC/OS-2

 It never returns to main()

 µC/OS-II is terminated if PC_DOSReturn() is called
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 Operating System Contents

◦ Data structure of each OS component 

◦ Basic functions of task scheduling and resource management

◦ Other fundamental supports of OS

 Application Format 

◦ Each task is an infinite loop

◦ Ready tasks execute according to their priorities

 Porting Efforts

◦ CPU and timer setting

◦ Interrupt handler
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