
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang, Department of Computer Science and Information

Engineering, Chang Gung University

● System Initialization and Memory Management

● Power Management Techniques and System Routine

● Embedded Linux Labs and Exercises on Android

● Embedded System Design Concepts

● Embedded System Developing Tools and Operating Systems

● Embedded Linux and Android Environment

● Real-Time System Design and Scheduling Algorithms

● System Synchronization Protocols

 An RTOS is an abstraction from hardware and software

programming

◦ Shorter development time

◦ Less porting efforts

◦ Better reusability

 Choosing an RTOS is important

◦ High efforts when porting to a different OS

◦ The chosen OS may have a high impact on the amount of

resources needed

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 With Soft Real-Time Systems

◦ Missed deadlines are not fatal

◦ Often have a human in the loop

 Example:

◦ Multimedia applications

 If the frame-rate of a video clip is lower than 30 frame/sec, the

user still can watch the video

◦ An automatic teller machine (ATM)

 If the ATM takes 30 seconds longer than the ideal, the user still

won’t walk away

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 If the deadline is missed, data is permanently lost or

people might get hurt

 Often, these systems are fully autonomous

 Examples:

◦ Air bag deployment

◦ Anti-lock brake system

◦ Nuclear power plant controller

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Especially designed for real-time requirements

 Completely real-time compliant

 Often usable for simple architecture

 Advantage:

◦ No or little overhead of computing power and memory

 Disadvantage:

◦ Limited functionality

 Examples:

◦ eCos, Nucleus, VxWork, QNX, uC/OS II

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Extension of an OS by real-time components

 Cooperation between RT-and non-RT parts

 Advantages:

◦ Rich functionality

 Disadvantage:

◦ No general real-time ability

◦ Need more computing and memory resources

 Example:

◦ RT-Linux, Solaris

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Standard

Operating System

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Real-Time Applications

Real-Time

Extension

Standard

Operating System

Hardware

Applications

 Process Management

◦ Real-Time Scheduler

◦ Synchronization Mechanism

 Inter-Process Communication (IPC)

 Semaphores

 Memory Management

 Interrupt Service Mechanism

 I/O Management

 Development Environments

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Manufacturer: Wind River System
◦ Largest player on the market

◦ Proprietary software

 Target Platforms:
◦ x86, MIPS, PowerPC, SPARC, ARM, …

 Application Examples:
◦ Transport systems: Airbus A400M, AH-64 Apache,

BMW iDrive

◦ Spacecraft: Phoenix Mars Lander (2008), Curiosity
Rover (2012), Yutu Rover (2013)

◦ Robots and programmable controllers, networking and
communication components, printers, copiers, and
image processing

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 VxWorks consists of threads (called "tasks")

◦ VxWorks does not start at a main function

◦ Every global function can be called from the shell

 Every global function or variable is global to the whole

system

 Every function can access to every memory location

◦ Every other global function and variable can be accessed

◦ Writing to a NULL pointer can corrupt the interrupt table

◦ Stack overflow can crash the system

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 What is RTLinux

◦ It is a hard real-time RTOS microkernel

◦ It runs the entire Linux operating system as a fully preemptive

process

 The Key Ideas

◦ To be hard real-time, the execution time of each component

should be deterministic

◦ Each real-time task can use only the device drivers with real-

time support

◦ Other tasks can use the whole functions of Linux and can not

lock device without the monitoring of RTLinux

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A priority scheduler that supports both a "lite POSIX"
interface and the RTLinux API

 A timer which controls the processor clocks and exports an
abstract interface for connecting handlers to clocks

 A module supports POSIX read/write/open interface to
device drivers

 A module connects real-time tasks and interrupt handlers to
Linux processes through a device layer so that Linux
processes can read/write to RT components

 A package of semaphore which is used among real-time
tasks

 A module shares memory between real-time components
and Linux processes

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The name is from micro-controller operating system,
version 2

 µC/OS-II is certified in an avionics product by FAA in
July 2000 and is also used in the Mars Curiosity Rover

 It is a very small real-time kernel
◦ Memory footprint is about 20KB for a fully functional kernel

◦ Source code is about 5,500 lines, mostly in ANSI C

◦ It’s source is open but not free for commercial usages

 Preemptible priority-driven real-time scheduling
◦ 64 priority levels (max 64 tasks)

◦ 8 reserved for µC/OS-II

◦ Each task is an infinite loop

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Deterministic execution times for most µC/OS-II

functions and services

 Nested interrupts could go up to 256 levels

 Supports of various 8-bit to 64-bit platforms: x86, 68x,

MIPS, 8051, etc.

 Easy for development: Borland C++ compiler and

DOS (optional)

 However, uC/OS-II still lacks of the following features:

◦ Resource synchronization protocol

◦ Soft-real-time support

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Application Code (Your Code!)

Processor Independent

Implementations
•Scheduling policy

•Event flags

•Semaphores

•Mailboxes

•Event queues

•Task management

•Time management

•Memory management

Application Specific

Configurations
•OS_CFG.H

•Max # of tasks

•Max Queue length

•…

uC/OS-II Port for Processor Specific Codes

CPU

Software

Hardware

Timer

 Three System Tasks

 Ten Application Tasks Randomly Print Its Number

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Header File

Main() Function

IncludeStarting Point

TaskStart() task

Create

TaskStartCreateTasks()

Function
Invoke

…

Task() taskTask() taskTask() taskTask() taskTask() taskTask() task

#include "includes.h"

/*

**

CONSTANTS

**

*/

#define TASK_STK_SIZE 512

#define N_TASKS 10

/*

**

VARIABLES

**

*/

OS_STK TaskStk[N_TASKS][TASK_STK_SIZE];

OS_STK TaskStartStk[TASK_STK_SIZE];

char TaskData[N_TASKS];

OS_EVENT *RandomSem;

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

void main (void)

{

PC_DispClrScr(DISP_FGND_WHITE + ISP_BGND_BLACK);

OSInit();

PC_DOSSaveReturn();

PC_VectSet(uCOS, OSCtxSw);

RandomSem = OSSemCreate(1);

OSTaskCreate(TaskStart,

(void *)0,

(void *)&TaskStartStk[TASK_STK_SIZE-1],

0);

OSStart();

}

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Entry point of the task

(a pointer to function)

User-specified data

Top of stack

Priority (0=hightest)

void TaskStart (void *pdata)

{

/*skip the details of setting*/

OSStatInit();

TaskStartCreateTasks();

for (;;)

{

if (PC_GetKey(&key) == TRUE)

{

if (key == 0x1B) { PC_DOSReturn(); }

}

OSTimeDlyHMSM(0, 0, 1, 0);

}

}

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Call the function to

create the other tasks

See if the ESCAPE

key has been pressed

Wait one second

static void TaskStartCreateTasks (void)

{

INT8U i;

for (i = 0; i < N_TASKS; i++)

{

TaskData[i] = '0' + i;

OSTaskCreate(

Task,

(void *)&TaskData[i],

&TaskStk[i][TASK_STK_SIZE - 1],

i + 1);

}

}

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Entry point of the task

(a pointer to function)

Argument:

character to printTop of stack

Priority

void Task (void *pdata)

{

INT8U x;

INT8U y;

INT8U err;

for (;;)

{

OSSemPend(RandomSem, 0, &err);

/* Acquire semaphore to perform random numbers */

x = random(80);

/* Find X position where task number will appear */

y = random(16);

/* Find Y position where task number will appear */

OSSemPost(RandomSem);

/* Release semaphore */

PC_DispChar(x, y + 5, *(char *)pdata, DISP_FGND_BLACK +DISP_BGND_LIGHT_GRAY);

/* Display the task number on the screen */

OSTimeDly(1);

/* Delay 1 clock tick */

}

}

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Randomly pick up the

position to print its data

Print & delay

 Initialize the internal structures of µC/OS-II and MUST

be called before any services

 Internal structures of µC/OS-2

◦ Task ready list

◦ Priority table

◦ Task control blocks (TCB)

◦ Free pool

 Create housekeeping tasks

◦ The idle task

◦ The statistics task

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Save the current status of DOS for the future

restoration

◦ Interrupt vectors and the RTC tick rate

 Set a global returning point by calling setjump()

◦ µC/OS-II can come back here when it terminates.

◦ PC_DOSReturn()

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Install the context switch handler

 Interrupt 0x08 (timer) under 80x86 family

◦ Invoked by INT instruction

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Start multitasking of µC/OS-2

 It never returns to main()

 µC/OS-II is terminated if PC_DOSReturn() is called

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Operating System Contents

◦ Data structure of each OS component

◦ Basic functions of task scheduling and resource management

◦ Other fundamental supports of OS

 Application Format

◦ Each task is an infinite loop

◦ Ready tasks execute according to their priorities

 Porting Efforts

◦ CPU and timer setting

◦ Interrupt handler

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

