Embedded Operating
Systems

Che-Wel Chang
chewei@mail.cgu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Course Roadmap

Basic Concepts

~Core Technology

Real Implementation

© All Rights Reserved, Prof. Che-Wei Chang, Department of Computer Science ancsinie
Engineering, Chang Gung University

Real-Time Operating Systems

Real Time OS

» An RTOS is an abstraction from hardware and software
programming
o Shorter development time
o Less porting efforts
o Better reusability

» Choosing an RTOS is important

> High efforts when porting to a different OS

> The chosen OS may have a high impact on the amount of
resources needed

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Soft Real-Time Systems

» With Soft Real-Time Systems
o Missed deadlines are not fatal
> Often have a human in the loop

» Example:

> Multimedia applications

- If the frame-rate of a video clip is lower than 30 frame/sec, the
user still can watch the video

> An automatic teller machine (ATM)

- If the ATM takes 30 seconds longer than the ideal, the user still
won’t walk away

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Hard Real-Time Systems

» If the deadline is missed, data is permanently lost or
people might get hurt
» Often, these systems are fully autonomous

» Examples:
o Alr bag deployment
o Anti-lock brake system
> Nuclear power plant controller

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Pure Real-Time OS

» Especially designed for real-time requirements
» Completely real-time compliant
» Often usable for simple architecture

» Advantage:
> No or little overhead of computing power and memory

» Disadvantage:
o Limited functionality

» Examples:
> eCos, Nucleus, VxWork, QNX, uC/OS i

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Real-Time Extension of General OS

» Extension of an OS by real-time components
» Cooperation between RT-and non-RT parts

» Advantages:
o Rich functionality

» Disadvantage:
> No general real-time ability
> Need more computing and memory resources

» Example:
o RT-Linux, Solaris

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Picture of Real-Time Extension

Applic

Standard
Operating System

Hardware

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang G

Components of a RTOS

v

Process Management

o Real-Time Scheduler

o Synchronization Mechanism
- Inter-Process Communication (IPC)
- Semaphores

Memory Management
Interrupt Service Mechanism
|/O Management

» Development Environments

v v Vv

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Case Studies of RTOS

Introduction of VxWorks

» Manufacturer: Wind River System
o Largest player on the market
o Proprietary software

» Target Platforms:
o X86, MIPS, PowerPC, SPARC, ARM, ...

» Application Examples:

o Transport systems: Airbus A400M, AH-64 Apache,
BMW iDrive

o Spacecraft: Phoenix Mars Lander (2008), Curiosity
Rover (2012), Yutu Rover (2013)

> Robots and programmable controllers, networking and
communication components, printers, copiers, and
Image processing

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Writing C Code on VxWorks

» VXWorks consists of threads (called "tasks")
> VVXWorks does not start at a main function
o Every global function can be called from the shell

» Every global function or variable is global to the whole
system

» Every function can access to every memory location
o Every other global function and variable can be accessed
> Writing to a NULL pointer can corrupt the interrupt table
o Stack overflow can crash the system

© All Rights Reserved, Prof. Che-Wei Chang,

= T8 13

Department of Computer Science and Informatio

Introduction of Real-Time Linux

» What 1s RTLInux

o It 1s a hard real-time RTOS microkernel

o It runs the entire Linux operating system as a fully preemptive
process

» The Key ldeas

> To be hard real-time, the execution time of each component
should be deterministic

o Each real-time task can use only the device drivers with real-
time support

o Qther tasks can use the whole functions of Linux and can not
lock device without the monitoring of RTLinux

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Modules of Real-Time Linux

» A priority scheduler that supports both a "lite POSIX"
Interface and the RTLinux API

A timer which controls the processor clocks and exports an
abstract interface for connecting handlers to clocks

A module supports POSIX read/write/open interface to
device drivers

A module connects real-time tasks and interrupt handlers to
Linux processes through a device layer so that Linux
processes can read/write to RT components

A package of semaphore which is used among real-time
tasks

A module shares memory between real-time components
and Linux processes

v

v

v

v

v

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informa

Introduction of uC/0OS-I11 (1/2)

» The name iIs from micro-controller operating system,
version 2

» WC/OS-11 1s certified In an avionics product by FAA In
July 2000 and is also used in the Mars Curiosity Rover

» It is a very small real-time kernel

o Memory footprint is about 20KB for a fully functional kernel
o Source code is about 5,500 lines, mostly in ANSI C
o It’s source Is open but not free for commercial usages

» Preemptible priority-driven real-time scheduling

> 64 priority levels (max 64 tasks) Micripm
> 8 reserved for uC/OS-II uC/
o Each task is an infinite loop The ReatTine emel

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Introduction of uC/0OS-Il (2/2)

» Deterministic execution times for most uC/OS-I|
functions and services

» Nested interrupts could go up to 256 levels

» Supports of various 8-bit to 64-bit platforms: x86, 68X,
MIPS, 8051, etc.

» Easy for development: Borland C++ compiler and
DOS (optional)
» However, uC/OS-I1 still lacks of the following features:

> Resource synchronization protocol
o Soft-real-time support

© All Rights Reserved, Prof. Che-Wei Chang,

=1 - FR R

Department of Computer Science and Informatio

The pyC/0OS-Il File Structure

Application Code (Your Code!)

Processor Independent
Implementations

Application Specific
Configurations

*Event queues

*Task management
*Time management
*Memory management

*Scheduling policy *OS_CFG.H
*Event flags *Max # of tasks
*Semaphores *Max Queue length
*Mailboxes ...

uC/OS-I11 Port for Processor Specific Codes

Software
Hardware

CPU

Timer

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enging

An Example on pC/OS-II:
Multitasking

@ C:\uCOS-II\EX1_x86L\BC45\TEST\TEST.EXE -|o| x|

uC/05-I1, The Real-Time Kernel
Jean J. Labrosse

EXAMPLE #1

89116946172338520924079161200809680987546680223383412430562925283669250986343296
9842206715123771950765672617043241264631834 1491404672986312193962508036 750506500
04198306651530328553114431544122365187318809730898007032272399612115650027363817
276932159331816390008163832741 72546 796339696111557231414036618916971167518052446
87167971628059031803062385498234324392909549230869288 18001 /833 713356812324910844
96076151657952095287797253242289346735963213862384059119369240826117079207048124
20287066314 7990806 79735361291095736391568112369038 /006523 74490934441 106826 730486
61653607628409302678221532201608795402893009143966646 154 7498215056188181 72743185
6956093520025240326084 95237606 1826520840416408890731454 7748669211659483772199335
93691897099525014271 78807300029 733409335578420001 7645649344251375360001363268941
18413755090752132896946215817959024606461504024548855195345717704064029146502579
3913530503 766800112848 7340021325236406504 17002548738 79836 71901122701 7145698622484
30331999915088698309 7101 10652257536915600865755306 146584 3100361054624463846286500
39453906 71616397575849710515394 714995 7173141314081435226235 18458454231281632586097
18641620203503855873907334096429674516982716819162572865737179140288485048441608
9723851969900592850361225028369385401662016926255361839 7140248120444 7485872954996

HTasks 0 CPU Usage: % 80387 FPU
#Task switch/sec: 4RI
<-PRESS 'ESC’ TO QUIT-» Y2 . o2

» Three System Tasks
» Ten Application Tasks Randomly Print Its Number

© All Rights Reserved, Prof. Che-\We
Department of Computer Science anc

Multitasking: Workflow

Header File

: : Include
Starting Point I TaskStartCreateTasks() }

w Main() Function } Invoke Function
1 Create .

TaskStart() task Task() task

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Che

Multitasking: Header File

#include ""includes.h*"

/*
*hkhkhkkhkhkkhkkhkkhkhkhkhkhkhkhkkhkkhkhkhkkhhkhkhkhkhkhkkhkkhkkhkhhhkhkhkhkkhkhkhkhkhikhkhkhkkhkkhkkhkhkikkhkkhkkhkikikikikk
CONSTANTS
*hkhkhkhkkhkhkkhkkhkkhkhkhkhkhkhkkhkkhkhkhkkhkhkhhkhkhkkhkkhkkhkkhkhhkhkhkhkhkkhkhkhkhkkhhkhkhkhkkhkkhkkhkhkikhhkhkkhkikikhikikk
*/

#define TASK_STK_SIZE 512

#define N_TASKS 10

/*

R R A B B B B B B B S L W I I S S A S A S S S S S S S S S S S S S S S S A S A S A S A S S S S S S S S B A S S S S S e 9
VARIABLES
*khkhkkhkkhkkhkkhkhkkhkkhkhkhkhkhkkhkkhkkhkkhkkhkkhkhkhhkhkhkkhkkhkkhkkhkhkhkhkhkhkhkkhkhkhkhkhhkhkhkhkkhkkhkhkhkikkhkkhkkhkikikikikk
*/

OS_STK TaskStk[N_TASKS][TASK_STK_ SIZE];

OS STK TaskStartStk[TASK_STK_SIZE];

char TaskData[N_TASKS];

OS_EVENT *RandomSem;

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enging

21

Multitasking: Main()

void main (void)

{
PC_DispClrScr(DISP_FGND WHITE + ISP_BGND_BLACK);
OSInit(); Entry point of the task
PC_DOSSaveReturn(); (a pointer to function)

PC_VectSet(uCOS, OSCtxSw);
RandomSem = OSSemCreate(1):
OSTaskCreate(TaskStart,

User-specified data

Top of stack &(VOid *)0,
(void *)&TaskStartStk[TASK_STK_SIZE-1],

OSStart();

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engi

22

Multitasking: TaskStart()

void TaskStart (void *pdata) Call the function to
{ create the other tasks

/*sKkip the detalls of setting™/
OSStatInit(); See if the ESCAPE
TaskStartCreateTasks(); key has been pressed

for (;;) /é§;f¥///
{

If (PC_GetKey(&key) == TRUE)
{

}
OSTimeDIyHMSM(O, 0, 1, 0);4 Wait one second

iIf (key == 0x1B) { PC_DOSReturn(); }

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Eng

Multitasking:
TaskStartCreateTasks()

static void TaskStartCreateTasks (void)
{
INT8U i;
for (i=0; i < N_TASKS; i++)
{ Entry point of the task
TaskData[i] ='0"' +i (a pointer to function)

OSTaskC reM S
Task, % '

Top of stack character to print

(void *)&TaskData[i],
o~ &TaskStk[i][TASK_STK_SIZE - 1],

Priority ' + 1):

}

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Eng

Multitasking: Task()

void Task (void *pdata)
{
INT8U x;
INT8U y;
INT8U err;
for (;;)
{
OSSemPend(RandomSem, 0, &err);
I* Acquire semaphore to perform random numbers */
X = random(80);
/* Find X position where task number will appear */
y = random(16);
[* Find Y position where task number will appear */
OSSemPost(RandomSem);
/* Release semaphore */

Randomly pick up the
position to print its data

Print & delay

PC_DispChar(x, y + 5, *(char *)pdata, DISP_FGND _ BLACK +DISP_BGND_LIGHT_GRAY);

/* Display the task number on the screen */
OSTimeDly(2);
/* Delay 1 clock tick */

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineeri

OSinit()

(\SOFTWARE\uCOS-II1\EX1_x86L\BC45\SOURCE\OS_CORE.C)

» Initialize the internal structures of uC/OS-11 and MUST
be called before any services

» Internal structures of uC/QOS-2
o Task ready list
o Priority table
> Task control blocks (TCB)
> Free pool
» Create housekeeping tasks
> The idle task
> The statistics task

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

PC_DQOSSaveReturn()

(\SOFTWARE\BLOCKS\PC\BC45\PC.C)

» Save the current status of DOS for the future
restoration
o Interrupt vectors and the RTC tick rate

» Set a global returning point by calling setjump()

o LC/OS-II can come back here when it terminates.
- PC_DOSReturn()

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

PC_VectSet(uCOS,0SCtxSw)

(\SOFTWARE\BLOCKS\PC\BC45\PC.C)

» Install the context switch handler

» Interrupt 0x08 (timer) under 80x86 family
o Invoked by INT instruction

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineeri

OSStart()

(SOFTWARE\uCOS-II\EX1_x86L\BC45\SOURCE\CORE.C)

» Start multitasking of pC/OS-2
» It never returns to main()
» LC/OS-11 1s terminated If PC_DOSReturn() is called

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Conclusion of pC/OS-II

» Operating System Contents
o Data structure of each OS component
o Basic functions of task scheduling and resource management
> Other fundamental supports of OS
» Application Format
o Each task Is an infinite loop
- Ready tasks execute according to their priorities

» Porting Efforts
o CPU and timer setting
o Interrupt handler

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

30

