
Embedded Operating System Midterm, Chang Gung University, Autumn 2024

Name: Student ID:
1. (16%) Please define the (a) Non-Recurring Engineering (NRE) Cost and (b) the Unit Cost of a system

of products. (c) For a product line with a large number of products, it is more important to reduce the NRE

cost or the unit cost? (d) When will the NRE cost be more important than the unit cost?

Answer: (a) Unit Cost: the monetary cost of manufacturing each copy of the system

(b) NRE Cost: the one-time monetary cost of designing the system

(c) The unit-cost reducing is more important for reducing the total cost.

(d) If the number of sales is expected to be small, the NRE cost is more important. It could be

some customized products.

2. (8%) To develop software on embedded systems, we usually need the cross-platform development

environment consisting of some cross compiler, linker, and source-level debugger. What is the cross

compiler? (Where will we run it? The generated binaries are executed on which platform?)

Answer: cross compiler is a compiler which can run on the host system, such as a PC, and can produce

the binary which can run on the target embedded system.

3. (16%) (a) Please define Priority Inversion. (b) For the example in the following figure, the three

medium-priority tasks arrive when τ1 is blocked a low-priority task τ3. Please carefully illustrate the

Priority Inversion in the example. (How and where is the Priority Inversion?) (c) Please define Priority

Inheritance. (d) How can we solve the Priority Inversion in the example by the Priority Inheritance

Protocol?

Answer: (a) A high-priority task is (indirectly) preempted by a low-priority task.

(b) When τ1 is blocked by τ3, and τ3 is then preempted by medium-priority tasks, there are

priority inversions because when the medium-priority tasks preempt the low-priority task, the

high-priority task is also indirectly preempted by the medium-priority tasks.

(c) When a high-priority task is blocked by a low-priority task, the low-priority task temporarily

runs with the priority of the a high-priority task.

(d) In the example, when τ1 is blocked by τ3, τ3 runs with the priority of τ1. Therefore, medium-

priority tasks can not preempt the execution of τ3 when it blocks τ1. Thus, there is no Priority

Inversion.

4. (8%) The following figure shows the structure of μC/OS-II. If now we want to launch a new application

on a running system with μC/OS-II, please explain the process for running the new application on μC/OS-

II.

Answer: We have to compile the whole package including the OS and application source files, shutdown

the system, install the whole image, and reboot the system.

5. (12%) Let’s have an example for an image transferred from ROM and running on RAM. Steps 1 to 6

are provided as follows. Please complete Step 7 to 12.

1. The CPU’s IP register is hardwired to execute the first instruction in memory, i.e., the reset

vector

2. The reset vector jumps to the first instruction of the .text section of boot image

3. The .data section is copied to RAM

4. Reserve space if RAM for the .bss section

5. Reserve stack space in RAM

6. Set SP register to the beginning of the newly created stack

Answer:

7. Copy the Compressed application image from ROM to RAM in a work area

8. Decompress and initialize the application image for instructions

9. Decompress and initialize the application image for global data

Application Code (Your Code!)

Processor Independent

Implementations
•Scheduling policy

•Event flags

•Semaphores

•Mailboxes

•Event queues

•Task management

•Time management

•Memory management

Application Specific

Configurations
•OS_CFG.H

•Max # of tasks

•Max Queue length

•…

uC/OS-II Port for Processor Specific Codes

CPU

Software

Hardware

Timer

10. Decompress and initialize the application image for .bss section

11. The loader transfers control to the image using a processor-specific jump instruction

12. Recycle the memory area occupied by the loader and the work area and reinitialize the SP

to point to the memory area occupied by the loader to use it as the stack space

6. (8%) Please define (a) “Soft” real-time systems and (b) “Hard” real-time systems.

Answer: (a) Soft real-time systems: We want to meet the deadline constraint so as to guarantee the

quality of applications, but deadline missing is not fatal, e.g., multimedia applications.

(b) Hard real-time systems: If the deadline is missed, critical data are permanently lost or people

might get hurt. Thus, it does not allow any deadline missing, e.g., nuclear power plant

controllers and anti-lock brake systems.

7. (8%) Context switching is an overhead of task scheduling. Thus, whenever we have a new task

scheduling algorithm, we would like to analyze the number of context switching. Stack Discipline is a

very useful rule for analyzing the context switching overhead of a task scheduling algorithm. Please

provide the definition of Stack Discipline.

Answer: If process A preempts process B, process A must complete before process B can resume.

8. (8%) The following function in Example 1 in the textbook is to create 10 tasks which periodically take a

random position and print out their numbers. Please explain the usage the four parameters of function

OSTaskCreate(). (The arguments are: Task, (void *)&TaskData[i], &TaskStk[i][TASK_STK_SIZE - 1],

i+1 in this case.)

Answer: Entry point of the to-be-created task

The argument for the function of the to-be-created task

The top of stack for the to-be-created task

The priority of the to-be-created task

.
9. (16%) For 2 periodic tasks P1 and P2, P1 has its period 50 and execution time 25, and P2 has its period

80 and execution time 35. Please draw the scheduling results of (a) the Earliest Deadline First scheduling

and (b) the Rate Monotonic Scheduling from time 0 to time 160. If there is any deadline missing, please

point it out and stop the scheduling when it has the deadline missing.

Answer:

