Lab 02 General Purpose Digital I/O (GPIO)

Objectives of this lab

- To build up your imagination on how a program affects hardware signals
- To learn how to send/receive signals from an application processor to external devices through I/O pads

Your work

- design a LED box
 - initial: all LED off
 - the LED runs some pattern after some button pressed
 - you can design your own pattern

General I/O Control Model

How a processor commands an I/O peripheral

Through access control registers

How a processor commands an I/O peripheral

Through access control registers

How to access control registers: the memory-mapped I/O

- Part of the addressing space is assigned to control registers
- Each control register is mapped to some memory address

256 bytes RAM and SFR Data Memory Space

How a processor commands an I/O peripheral

Through access control registers

General Purpose Digital I/O

 The processor assigns/examines the logical status of some I/O pins directly

I/O Model of Legacy 8051 Processor

- Four 8-bit I/O ports P0-P3
- (2) Each pin is bidirectional
 - sometimes input and sometimes output

- Four 8-bit I/O ports P0-P3
- (2) Each pin is bidirectional
 - sometimes input and sometimes output

Note: in our 8052-like architecture, an additional P4 can be used. However, the basic principle is the same.

- Four 8-bit I/O ports P0-P3
- (2) Each pin is bidirectional
 - sometimes input and sometimes output

- Four 8-bit I/O ports P0-P3
- (2) Each pin is bidirectional
 - Sometimes input and sometimes output

- Four 8-bit I/O ports P0-P3
- (2) Each pin is bidirectional
 - sometimes input and sometimes output

Imagination on 8051 architecture

Imagine how data flow in the architecture!

How to program I/O ports?

through SFRs P0-P3

F8								FF
F0	В							F7
E8								EF
E0	ACC							E7
D8								DF
D0	PSW							D7
C8								CF
C0								C7
B8	ΙP							BF
B0	P3							В7
A8	TE							AF
A0	P2							A7
	SCON	SBUF						9F
90	P1							97
	TCON	ГМОD	TL0	TL1	TH0	TH1		8F
80	P0	SP	DPL	DPH			PCON	87

Bit-addressable Registers

How 8051 send out dedicated control signals

MOV R0, #01001101B MOV P0, R0

The case of input (receive)

- initial: set a bit (pin) with value 0
- receive (input): wait for the bit to be toggled to be 1

P0.3 = 0

//wait unit P0.3 been set to 1
while (P0.3==0);

//action for the I/O event

The case of input (receive)

- initial: set a bit (pin) with value 0
- receive (input): wait for the bit to be toggled to be 1

P0.3 = 0

//wait unit P0.3 been set to 1
while (P0.3==0);

//action for the I/O event

Example 1: wait for a button pressed

Show how to input signal

Demo: wait for a button pressed

```
wait:
```

```
A = P1;
if (A==0) goto wait;
```

exit:

//something after button pressed

wait:

mov A, P1 JZ wait

exit:

//something after button pressed

Demo: wait for a button pressed

```
wait:
```

A = P1; if (A==0) goto wait;

exit:

//something after button pressed

wait:

mov A, P1 JZ wait

exit:

//something after button pressed

Example 2: make LED run

Show how to output signal

MAIN:

MOV A, #00000001B

MOV PSW, #00H

Loop:

MOV P0, A

LCALL Delay

RR A

LJMP Loop

MOV R0, #50

Delay: MOV R1, #40

Delay1: MOV R2, #249

Delay2: DJNZ R2, Delay2

DJNZ R1, Delay1

DJNZ R0, Delay

RET

R1, Delay1

R0, Delay

R2, #249

DJNZ

DJNZ

RET

R2, Delay2

Delay1:

Delay2:

MOV

DJNZ

Demo Requirements

- Assembly only!
- Adjust the nested loop (in the previous slide) to let the LED light shift one step for EACH SECOND
- Bonus 1 (於結報10%加分)
 - 請將學號的數字部分加總後對100取餘數得到XY
 - 改成每 (X+1)/2 秒移動一格
 - Y對5取餘數得到Z
 - 改成每次亮連續的Z+1顆LED燈
- Bonus 2 (於結報 5% or 10%加分)
 - 設計其他LED燈變換的樣態,助教會從兩種程度的加分擇一
 - 給分依據:這個樣態是不是很多人做一樣的?是否能明確解釋source code?

Hints

- 參考助教前次實驗給大家練習的軟體和硬體操作
- 請用杜邦線連接對應的pin腳
 - 板子上對應的腳位 (P0.0 → pin 11; P0.1 → pin 12; P0.2 → 13; ...)

■ SimLab裡有些參考範例可以協助大家快速上手此次實驗

Lab02 Study Report

- File name: Bxxxxxxx-MCE-Lab2-Study
- File type: PDF only
- The requirements of report
 - Summarize the content of this slide set
 - Provide your plan for this lab exercise
 - No more than one A4 page
 - Grading: 80 ± 15
- Deadline: 2025/10/01 23:00 (不收遲交)
- Upload to e-learning system

Lab02 Lab Exercise Report

- File name: Bxxxxxxx-MCE-Lab2-Result
- File type: PDF only
- The requirements of report
 - Summarize the problems and results you have in this exercise
 - Some screen shots or some code explanation can be provided
 - No more than two A4 pages
 - Grading: 80 ± 15
- Deadline: 2025/10/8 23:00 (不收遲交)
- Upload to e-learning system
- Bonus:
 - Read the Demo Requirements