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 User Interface (UI)
◦ Command line Interface, batch interface, graphical user 

interface (GUI), etc.

◦ Interface between the user and the operating system

◦ Friendly UI’s

 Command-line-based interfaces or mused-based window-and-

menu interface

◦ For example, UNIX shell and command.com in MS-DOS

 Program Execution

◦ Loading, running, terminating, etc.
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 I/O Operations
◦ General/special operations for devices

 Efficiency & protection

 File-System Manipulation
◦ Read, write, create, delete, etc.

◦ File and Directory Management

◦ Permission Management

 Communications
◦ Intra-processor or inter-processor communication

 Shared memory or message passing 
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 Error Detection
◦ Possible errors from CPU, memory, devices, user programs 

→ Ensure correct & consistent computing

 Resource Allocation
◦ Multiple users might use some shared resources

◦ Resource management has to be efficiency

 Accounting
◦ Statistics or accounting

 Protection and Security
◦ Ensure that all access to system resources is controlled

◦ Enforce that all requests are authenticated
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 Two Approaches to Implement a 

Command-Line Interpreter (CLI):

◦ Contain codes to execute commands

 Fast but the interpreter tends to be big

 Painful in revision

◦ Implement commands as system 

programs→ Search programs which 

correspond  to the commands (UNIX)

 Using parameter passing

 Being slow 

 Inconsistent interpretation of parameters
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 Components

◦ Screen, icons, folders, pointer, etc.

 History

◦ Xerox PARC research facility (1970’s)

◦ Mouse– 1968 

◦ Mac OS– 1980’s

◦ Windows 1.0~ 10

 Trends

◦ Mixture of GUI and command-line interfaces

◦ Multimedia, intelligence, etc.
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 System Calls

◦ Interface between user processes and the OS

 Application Programming Interface (API)

◦ Most details of  OS interface hidden from programmer by API  

◦ Examples: 

 Win32 API for Windows 

 POSIX* API for POSIX-based systems including UNIX, Linux, 

and Mac OS X 

◦ Benefits (API vs System Calls)

 Good portability, Ease of use, and  Better functionality
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*POSIX: Portable Operating System Interface



 Triggering a System Call
◦ Use a special instruction supported by the hardware

 For Intel x86, it is “int 0x80”

◦ Provide the type and parameters of the system call

 Parameter Passing
◦ Registers 

◦ Stacks 

◦ Registers pointing to blocks
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 A C program can invoke printf() in the library (API)

 In the API implementation, printf() calls write() system call
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 Process Control

 File Management

 Device Management

 Information Maintenance

 Communications

 Protection
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 Load and execute

◦ Have to return the control

 End (normal exit) or abort (abnormal)

◦ Error level or no

◦ Interactive, batch, GUI-supported systems

 Creation and/or termination of other processes

◦ To support the techniques of multiprogramming and 

timesharing mentioned in Chapter 1

 Get process attributes, set process attributes

 Wait for time, wait event, signal event

 Allocate and free memory
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 Example: MS-DOS

◦ Single-tasking

◦ Shell is invoked when 

system is booted

◦ Single memory space

◦ Loads program into 

memory, overwriting all 

but the kernel

◦ Program exit → shell 

reloaded

17
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University

(a) At system startup (b) running a program

load a 

program 

reload the 

shell



 Example: FreeBSD

◦ Multitasking

◦ OS invokes user’s choice of shell

◦ Shell executes fork() system call to 

create process

◦ OS loads program into process

◦ Shell waits for process to terminate or 

continues with user commands

◦ Process exits with return code

 with code of 0 → no error 

 with code > 0 → error code
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 Create and delete

 Open and close

 Read, write, and reposition (e.g., rewinding)

 Get or set attributes of files

 Operations for directories
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 Request device, release device

 Read, write, reposition

 Get device attributes, set device attributes

 Logically attach or detach devices
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 Message Passing

◦ Open, close, accept connections

◦ No access conflict and easy implementation

 Shared Memory

◦ Memory mapping and process synchronization

◦ Short latency and high throughput 
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 Information Maintenance

◦ Get time or date, set time or date

◦ Get system data, set system data

 Protection

◦ Control access to resources

◦ Get and set permissions

◦ Allow and deny user access
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 Goal:

◦ Provide a convenient environment for program development 

and execution

 Types

◦ File Management, e.g., rm

◦ Status information, e.g., date

◦ File Modifications, e.g., editors

◦ Program Loading and Executions, e.g., loader

◦ Programming Language Supports, e.g., compilers

◦ Communications, e.g., telnet
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 Design Goals and Specifications
◦ User goals: ease of use, short latency

◦ System goals: reliable, high utilization

 Separation of Policy and Mechanism
◦ Policy: What will be done

◦ Mechanism：How to do things

 OS Implementation in High-Level Languages
◦ Advantages:

 Being easy to understand and debug

 Being written fast, more compact, and portable

◦ Disadvantages:

 Less efficient 

 Larger size
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 Not divided into 

modules

 Although MS-DOS has 

some structure, its 

interfaces and levels of 

functionality are not well 

separated
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 Advantage: Modularity 

→Debugging & Verification

 Difficulty: Appropriate layer 

definitions, less efficiency due 

to overheads

 A Layer Definition Example:

◦ L5 User programs

◦ L4 I/O buffering

◦ L3 Operator-console device driver

◦ L2 Memory management

◦ L1 CPU scheduling

◦ L0 Hardware
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 Most modern operating systems implement loadable 

kernel modules

◦ Uses object-oriented approach

◦ Each core component is separate

 Solaris Modular Approach
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 The concept of microkernels was proposed in CMU in 
mid 1980s (Mach)
◦ Moving all nonessential components from the kernel to the 

user or system programs

 Benefits
◦ Ease of OS service extensions → portability, reliability, 

security

 Examples

◦ Tru64 UNIX (Mach kernel), MacOS X (Darwin kernel), L4 

Microkernel
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 Most modern operating systems actually use more than 

one model for their implementations

 Hybrid combines multiple approaches to address 

performance, security, usability needs

◦ Linux and Solaris kernels in kernel address space, so 

monolithic, plus modular for dynamic loading of functionality

◦ Windows mostly monolithic, plus microkernel for different 

subsystem personalities

◦ Apple Mac OS X is based on a microkernel and also hybrid, 

layered, Aqua UI plus Cocoa programming environment
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 Beyond simple but not fully layered
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Source: http://en.wikipedia.org/wiki/Android_(operating_system)

Use the Linux kernel

Provide useful libraries

Run each program on a 

Dalvik virtual machine

Define frequently used 

function packages

Include a Java-like API 

for user applications 



 Apple mobile OS for iPhone, 

iPad

◦ Structured on Mac OS X, added 

functionality

◦ Also runs on different CPU 

architecture (ARM vs. Intel)

◦ Media services layer for 

graphics, audio, video

◦ Cocoa Touch Objective-C and 

Swift APIs for developing apps
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 Debugging

◦ An activity in finding and fixing errors or bugs, including 

performance problem, that exist in hardware or software

 Terminologies

◦ Profiling– A procedure to understand the statistical trends

◦ Performance tuning– A procedure that seeks to improve 

performance by removing bottlenecks

◦ Crash– A kernel failure

◦ Core dump– A capture of the memory of a process or OS
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 Operating systems are designed to run on any of a class 

of machines; the system must be configured for each 

specific computer site

 SYSGEN program obtains information concerning the 

specific configuration of the hardware system

◦ Used to build system-specific compiled kernel 

◦ Can generate more efficient code than one general kernel
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Recompilation of a 
modified source code

Ease of modification Good performance and smaller size



 When power is initialized on a system, execution starts at a 

fixed memory location

◦ Firmware ROM is used to hold initial boot code

 Operating systems must be made available to hardware so 

hardware can start it

◦ Small piece of code– bootstrap loader, stored in ROM or EEPROM 

locates the kernel, loads it into memory, and starts it

◦ Sometimes two-step process where boot block at fixed location loaded 

by ROM code, which loads bootstrap loader from disk

 Common bootstrap loader, GRUB, allows selection of kernel 

from multiple disks, versions, kernel options

37
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University


