
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling
6. Synchronization
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems
12. Secondary-Storage Systems

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 User Interface (UI)
◦ Command line Interface, batch interface, graphical user

interface (GUI), etc.

◦ Interface between the user and the operating system

◦ Friendly UI’s

 Command-line-based interfaces or mused-based window-and-

menu interface

◦ For example, UNIX shell and command.com in MS-DOS

 Program Execution

◦ Loading, running, terminating, etc.

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 I/O Operations
◦ General/special operations for devices

 Efficiency & protection

 File-System Manipulation
◦ Read, write, create, delete, etc.

◦ File and Directory Management

◦ Permission Management

 Communications
◦ Intra-processor or inter-processor communication

 Shared memory or message passing

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Error Detection
◦ Possible errors from CPU, memory, devices, user programs

→ Ensure correct & consistent computing

 Resource Allocation
◦ Multiple users might use some shared resources

◦ Resource management has to be efficiency

 Accounting
◦ Statistics or accounting

 Protection and Security
◦ Ensure that all access to system resources is controlled

◦ Enforce that all requests are authenticated

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Two Approaches to Implement a

Command-Line Interpreter (CLI):

◦ Contain codes to execute commands

 Fast but the interpreter tends to be big

 Painful in revision

◦ Implement commands as system

programs→ Search programs which

correspond to the commands (UNIX)

 Using parameter passing

 Being slow

 Inconsistent interpretation of parameters

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

rm

…

…

cd

…

…

ls

…

…

Interpreter

...

rm

…

…

cd

…

…

ls

…

…

Interpreter

...

 Components

◦ Screen, icons, folders, pointer, etc.

 History

◦ Xerox PARC research facility (1970’s)

◦ Mouse– 1968

◦ Mac OS– 1980’s

◦ Windows 1.0~ 10

 Trends

◦ Mixture of GUI and command-line interfaces

◦ Multimedia, intelligence, etc.

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 System Calls

◦ Interface between user processes and the OS

 Application Programming Interface (API)

◦ Most details of OS interface hidden from programmer by API

◦ Examples:

 Win32 API for Windows

 POSIX* API for POSIX-based systems including UNIX, Linux,

and Mac OS X

◦ Benefits (API vs System Calls)

 Good portability, Ease of use, and Better functionality

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

*POSIX: Portable Operating System Interface

 Triggering a System Call
◦ Use a special instruction supported by the hardware

 For Intel x86, it is “int 0x80”

◦ Provide the type and parameters of the system call

 Parameter Passing
◦ Registers

◦ Stacks

◦ Registers pointing to blocks

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

x: the address

of parameters

load address x

system call 13

x

register R

use parameters

pointed by

register R

code for

system

call 13

data 1

data 2

data blocks

user

program

system calls

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A C program can invoke printf() in the library (API)

 In the API implementation, printf() calls write() system call

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Include a header file of

the API (glibc in Linux)

Call a function of the API

The function printf() calls

a system call write()

Change into kernel mode

and run write()

Return from system call

Return from API call

 Process Control

 File Management

 Device Management

 Information Maintenance

 Communications

 Protection

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Load and execute

◦ Have to return the control

 End (normal exit) or abort (abnormal)

◦ Error level or no

◦ Interactive, batch, GUI-supported systems

 Creation and/or termination of other processes

◦ To support the techniques of multiprogramming and

timesharing mentioned in Chapter 1

 Get process attributes, set process attributes

 Wait for time, wait event, signal event

 Allocate and free memory

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Example: MS-DOS

◦ Single-tasking

◦ Shell is invoked when

system is booted

◦ Single memory space

◦ Loads program into

memory, overwriting all

but the kernel

◦ Program exit → shell

reloaded

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

(a) At system startup (b) running a program

load a

program

reload the

shell

 Example: FreeBSD

◦ Multitasking

◦ OS invokes user’s choice of shell

◦ Shell executes fork() system call to

create process

◦ OS loads program into process

◦ Shell waits for process to terminate or

continues with user commands

◦ Process exits with return code

 with code of 0 → no error

 with code > 0 → error code

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Create and delete

 Open and close

 Read, write, and reposition (e.g., rewinding)

 Get or set attributes of files

 Operations for directories

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Request device, release device

 Read, write, reposition

 Get device attributes, set device attributes

 Logically attach or detach devices

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Message Passing

◦ Open, close, accept connections

◦ No access conflict and easy implementation

 Shared Memory

◦ Memory mapping and process synchronization

◦ Short latency and high throughput

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

kernel

Process A

Process B

M

M

M

kernel

Process A

Process B
Message

Passing

Shared Memory

 Information Maintenance

◦ Get time or date, set time or date

◦ Get system data, set system data

 Protection

◦ Control access to resources

◦ Get and set permissions

◦ Allow and deny user access

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Goal:

◦ Provide a convenient environment for program development

and execution

 Types

◦ File Management, e.g., rm

◦ Status information, e.g., date

◦ File Modifications, e.g., editors

◦ Program Loading and Executions, e.g., loader

◦ Programming Language Supports, e.g., compilers

◦ Communications, e.g., telnet

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Design Goals and Specifications
◦ User goals: ease of use, short latency

◦ System goals: reliable, high utilization

 Separation of Policy and Mechanism
◦ Policy: What will be done

◦ Mechanism：How to do things

 OS Implementation in High-Level Languages
◦ Advantages:

 Being easy to understand and debug

 Being written fast, more compact, and portable

◦ Disadvantages:

 Less efficient

 Larger size

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Not divided into

modules

 Although MS-DOS has

some structure, its

interfaces and levels of

functionality are not well

separated

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Advantage: Modularity

→Debugging & Verification

 Difficulty: Appropriate layer

definitions, less efficiency due

to overheads

 A Layer Definition Example:

◦ L5 User programs

◦ L4 I/O buffering

◦ L3 Operator-console device driver

◦ L2 Memory management

◦ L1 CPU scheduling

◦ L0 Hardware

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Most modern operating systems implement loadable

kernel modules

◦ Uses object-oriented approach

◦ Each core component is separate

 Solaris Modular Approach

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The concept of microkernels was proposed in CMU in
mid 1980s (Mach)
◦ Moving all nonessential components from the kernel to the

user or system programs

 Benefits
◦ Ease of OS service extensions → portability, reliability,

security

 Examples

◦ Tru64 UNIX (Mach kernel), MacOS X (Darwin kernel), L4

Microkernel

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Hardware Platform Hardware Platform

Device Drivers

Virtual Memory, Dispatcher

Scheduler, IPC, File System, …

IPC, Virtual Memory, Scheduler

APPs

APPs
Device

Drivers

File

Server
…

Monolithic Kernel Microkernel

User Mode

Kernel

Mode

 Most modern operating systems actually use more than

one model for their implementations

 Hybrid combines multiple approaches to address

performance, security, usability needs

◦ Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of functionality

◦ Windows mostly monolithic, plus microkernel for different

subsystem personalities

◦ Apple Mac OS X is based on a microkernel and also hybrid,

layered, Aqua UI plus Cocoa programming environment

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Beyond simple but not fully layered

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Source: http://en.wikipedia.org/wiki/Android_(operating_system)

Use the Linux kernel

Provide useful libraries

Run each program on a

Dalvik virtual machine

Define frequently used

function packages

Include a Java-like API

for user applications

 Apple mobile OS for iPhone,

iPad

◦ Structured on Mac OS X, added

functionality

◦ Also runs on different CPU

architecture (ARM vs. Intel)

◦ Media services layer for

graphics, audio, video

◦ Cocoa Touch Objective-C and

Swift APIs for developing apps

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Debugging

◦ An activity in finding and fixing errors or bugs, including

performance problem, that exist in hardware or software

 Terminologies

◦ Profiling– A procedure to understand the statistical trends

◦ Performance tuning– A procedure that seeks to improve

performance by removing bottlenecks

◦ Crash– A kernel failure

◦ Core dump– A capture of the memory of a process or OS

35
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Operating systems are designed to run on any of a class

of machines; the system must be configured for each

specific computer site

 SYSGEN program obtains information concerning the

specific configuration of the hardware system

◦ Used to build system-specific compiled kernel

◦ Can generate more efficient code than one general kernel

36
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

No recompilation &

completely table-driven

Linking of modules for

selected OS
Recompilation of a
modified source code

Ease of modification Good performance and smaller size

 When power is initialized on a system, execution starts at a

fixed memory location

◦ Firmware ROM is used to hold initial boot code

 Operating systems must be made available to hardware so

hardware can start it

◦ Small piece of code– bootstrap loader, stored in ROM or EEPROM

locates the kernel, loads it into memory, and starts it

◦ Sometimes two-step process where boot block at fixed location loaded

by ROM code, which loads bootstrap loader from disk

 Common bootstrap loader, GRUB, allows selection of kernel

from multiple disks, versions, kernel options

37
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

