Operating System
Concepts

Che-Wel Chang
chewei@mail.cqu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Contents

1. Introduction
2. System Structures
mm) . Process Concept
4. Multithreaded Programming
5. Process Scheduling
6. Synchronization
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems
12. Secondary-Storage Systems

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineerin

Chapter 3. Process
Concept

Objectives

» To Introduce the notion of a process

» To describe the various features of processes, including
scheduling, creation and termination, and
communication

» To explore inter-process communication
» To describe communication in client-server systems

© All Rights Reserved, Prof. Che-Wei Chang, Tm ‘ | f H 2% 4

Department of Computer Science and Information Enc

Basic Process Concept

» A program is a passive entity stored on disk, and a
process Is an active entity

o A program becomes process when the executable file is loaded
Into memory

> The execution of a program started via GUI mouse clicks, the
command line entry of its name, etc.

> One program can be executed as several processes

» An operating system can execute a variety of programs
o |n batch systems: jobs

o In time-shared systems: user programs or tasks

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Process in Memory

max

stack

l

heap

data

text

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang €

Process States

» New: The process Is being created
» Running: Instructions are being executed

» Waliting: The process Is waliting for some event to
occur

» Ready: The process is waiting to be assigned to a
processor

» Terminated: The process has finished execution

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

Diagram of Process States

admitted interrupt

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engineering, Chz

Process Control Block (PCB)

» PCB: The repository for any information that may vary
from process to process
> Process state— running, waiting, etc
> Program counter— location of the currently executed instruction
o CPU registers— contents of all process-centric registers

o CPU scheduling information— priorities, scheduling queue
pointers

o Memory-management information— memory allocated to the
process

o Accounting information— CPU used, clock time elapsed since
start, time limits

o |/O status information— 1/O devices allocated to process, list of
opened files

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informati

Process Scheduling with PCB

» The goal of multiprogramming
o Maximize CPU/resource utilization

» The goal of time sharing
o Allow each user to interact with his/her program

Ready
Queue

Disk
Unit 0

Tape
Unit 1

PCB1

head

PCB2

tail

head

PCB3

tail

head

tail

7

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Process Scheduling- A Queueing
Diagram

_____, ready queue CPU g
l/O queue *=—— |/O request &—
time slice :
expired

interrupt walit for an
OCcCcurs interrupt

child fork a
@ child)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineerin

Processor Schedulers

» Long-term scheduler (or job scheduler)- selects
which processes should be brought into the ready queue

» Short-term scheduler (or CPU scheduler)- selects
which process should be executed next and allocates
CPU

» Medium-term scheduler can be added as swapper

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineeri

Long-Term Scheduler

» Processes can be described as either:

> 1/O-bound process — spends more time doing /O than computations,
many short CPU bursts

o CPU-bound process — spends more time doing computations; few very
long CPU bursts

» Long-term scheduler strives for good process mix

CPU ‘ Utilization?
Job Pool - | |

Memory ‘ Utilization?
» Remarks :

o Control the degree of multiprogramming

o Can take more time in selecting processes because of a longer interval
between executions

o May not exist physically

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Short-Term Scheduler

» Goal: To efficiently allocate the CPU to one of the
ready processes according to some criteria

» Short-term scheduler is invoked very frequently
(milliseconds) =» must be fast

» In Linux, after version 2.6.23, the scheduler is the
Completely Fair Scheduler (CFS)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Medium-Term Scheduler

» Goal: Remove process from memory, store on disk,
bring back in from disk to continue execution: it Is also
called “swapping”

swap in partially executed swap out
swapped-out processes

ready queue -@_ » end
I/O waiting I
queues

© All Rights Reserved, Prof. Che-Wei Chang,

Yy

Department of Computer Science and Information Engine

Process Scheduling- Context
Switches

» Context Switch: Pure Overheads

o Save the state of the old process and load the state of the newly
scheduled process.

- The context of a process is usually reflected in PCB

» Issues:

> The cost depends on the hardware support

* e.g. processors with multiple register sets or computers with
advanced memory management

o Threads, I.e., light-weight process (LWP), are introduced to break
this bottleneck

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

CPU Switch from Process to
Process

process P, operating system process P,

interrupt or system call

executlng ﬂ /
h A ~

save state into PCB,

>idle

reload state from PCB, 1
>idle interrupt or system call executing

.

save state into PCB;

> idle

) reload state from PCB, J

executing | _'¥
A

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Parent and Child Processes

» Parent processes create child processes, which in turn
create other processes, forming a tree of processes

» Generally, process identified and managed via a
process identifier (PID)

root

pagedaemon swapper Init

userl user2 user3

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Process Creation

» Address Space
o Child duplicate of parent
o Child has a program loaded into it

» UNIX Examples
o fork () system call creates new process

- exec () system call used after a fork () to replace the process’
memory space with a new program

wait
child : exec() »

© All Rights Reserved, Prof. Che-Wei Chang,

parent resumes

Department of Computer Science and Information Engineer

Process Termination

» Process executes last statement and asks the operating
system to delete it: exit ()
o Wait the output data from child to parent: wait ()

» Parent may terminate the execution of child processes:
abort ()
=>» Child has exceeded allocated resources
=» Task assigned to child is no longer required
> Receive the return value form child
o Some operating systems do not allow child to continue if its

parent terminates
- All children should be terminated - cascading termination

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

C Program Forking a Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid t pid;

/* fork a child process */
(pid = fork(); J

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;
1
(else if (pid == 0) { /* child process */]
execlp("/bin/1s","1s" ,NULL) ;

1

[else { /* parent process */]
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang €

Inter-Process Communication

» Processes within a system may be independent or
cooperating

» Cooperating process can affect or be affected by other
processes, including sharing data

» Reasons for cooperating processes:
o Information sharing
o Computation speedup
o Modularity
o Convenience

» Cooperating processes need inter-process
communication (IPC)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

=B s0 »

Two Models of IPC

» Shared Memory
o Max Speed & Communication Convenience

» Message Passing
> No Access Conflict & Easy Implementation

process A process A
process B shared memory
process B
message queue
Mp(M4 (Mo Mg| ... |Mp,
kernel
kernel

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Shared Memory IPC

» A Consumer-Producer Example:

o Bounded buffer or unbounded buffer
- Supported by inter-process communication (IPC) or by hand

codin
’ 2
0 ‘ buffer[0...n-1]
n-1 Initially, in=out=0
n-2

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Shared Memory- Consumer

while (true)

{

while (i1n == out);
/* do nothing and have to wait */
next consumed = buffer|out];

out = (out + 1) % BUFFER_SIZE;
... /* use the consumed item */

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Shared Memory- Producer

while (true)
{
.. /* produce a new item */
while (((in + 1) % BUFFER SIZE) == out);
/* do nothing */
buffer[in] = next produced;
in = (in + 1) % BUFFER SIZE;

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Message Passing IPC

» Logical Implementation of Message Passing
> Fixed/variable message size
o Symmetric/asymmetric communication
o Direct/indirect communication
o Synchronous/asynchronous communication
o Automatic/explicit buffering
> Send by copy or reference

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Direct Message Passing

» Processes must name each other explicitly:
- send (P, message) — send a message to process P
- receive(Q, message) — receive a message from process Q

» Properties of the communication link
o Links are established automatically

o A link Is associated with exactly one pair of communicating
processes

- Between each pair there exists exactly one link
> The link may be unidirectional, but is usually bi-directional

© All Rights Reserved, Prof. Che-Wei Chang, = 4% 08

Department of Computer Science and Informatio

Indirect Communication

» Messages are directed and received from mailboxes
(also referred to as ports)
- send(A, message) — send a message to mailbox A
- receive(A, message) — receive a message from mailbox A

» Properties of the communication link

o Links are established only if processes share a common
mailbox

> A link may be associated with many processes

o Each pair of processes may share several communication
links

o Links may be unidirectional or bi-directional

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informati

29

Issues of Indirect Communication

» Mailbox sharing
- Py, P,, and P share mailbox A
- P,, sends; P, and P receive
> Who gets the message?

P2
P1

messages

7
™~ P3

» Solutions
> Allow a link to be associated with at most two processes
> Allow only one process at a time to execute a receive operation
> Allow the system to select arbitrarily the receiver

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

IPC Synchronization

» Synchronous Message Passing IPC
> Blocking send has the sender block until the message is
received
> Blocking receive has the receiver block until a message is
available
» Asynchronous Message Passing IPC
> Non-blocking send has the sender send the message and
continue
> Non-blocking receive has the receiver receive a valid message
or null

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

IPC Buffering

» The capacity of a link: the number of messages could
be held in the link

o Zero capacity — 0 messages
- Sender must wait for receiver

> Bounded capacity — finite length of n messages
- Sender must wait if link is full

o Unbounded capacity — infinite length
- Sender never waits
» The last two items are for asynchronous
communication and may need acknowledgement

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Examples of IPC Systems - POSIX

» POSIX Shared Memory

o Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR,
0660) ;

o Set the size of the object
ftruncate (shm f£d, 4096);

o Memory map the object
ptr = mmap(0,4096,PROT WRITE,MAP SHARED,
shm f£d, 0);
> Now the process could write to the shared memory
sprintf (ptr, "Writing to shared memory");

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

Examples of IPC Systems - Mach

» Mach — A message-based OS from the Carnegie
Mellon University

- When a task Is created, two special mailboxes, called ports,
are also created.

- The Kernel mailbox is used by the kernel to communicate
with the tasks

- The Notify mailbox is used by the kernel sends notification
of event occurrences.

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Three IPC System Calls on Mach

» msg_send
o Options when mailbox is full:
- Wait indefinitely
- Return immediately
- Wait at most for n ms

- Temporarily cache a message: only one message to a full mailbox can be
pending at any time for a sending tread

» Msg_receive
> Only one task can own & have a receiving privilege of a mailbox
o Options when mailbox is empty:
- Wait indefinitely
* Return immediately
- Wait at most for n ms
» MSQg_rpc
> Remote Procedure Calls

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Communication in Client-Server
Systems

» Socket

> An endpoint for communication identified by an IP address
concatenated with a port number

- Aclient-server architecture
» [etc/services: 23-telnet, 21-ftp, 80-web server, etc.

Host X

Web server

Socket
146.86.5.2:1652

Socket
161.25.19.8:80

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Remote Procedure Calls

» A way to abstract the procedure-call mechanism for use
between systems with network connection

» Stubs at the client site
> One for each RPC
o Locate the proper port and marshal parameters

» Stubs at the server site
> Recelve the message
o Invoke the procedure and return the results

» Data representation handled via the External Data
Representation (XDL) format to account for different
architectures
> Big-endian and little-endian

© All Rights Reserved, Prof. Che-Wei Chang, T ’ 5 37

Department of Computer Science and Informatic

Execution of RPC

Get the port

—

Send the RPC &{

Get the results &{

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port Pin user
RPC message

kernel sends
REE

kernel receives
reply, passes
it to user

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

messages

From: client
To: server
Port: matchmaker
Re: address
for RPC X

From: server
To: client
Port: kernel
Re: RPC X
Port: P

From: client
To: server
Port: port P
<contents>

From: RPC
Port: P
To: client
Port: kernel
<output>

server

matchmaker
receives
message, looks
up answer

Y

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

y

A
daemon
processes
request and
processes send
output

Pipes

» Acts as a conduit allowing two processes to
communicate

» Issues

o |s communication unidirectional or bidirectional?

o In the case of two-way communication, Is it half-duplex or
full-duplex?

o Must there exist a relationship (i.e. parent-child) between the
communicating processes?

o Can the pipes be used over a network?

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Ordinary Pipes

» Ordinary Pipes allow communication in the standard
producer-consumer style

» Producer writes to the write-end of the pipe
» Consumer reads from the read-end of the pipe
» Ordinary pipes are therefore unidirectional

» Require parent-child relationship between communicating
processes

parent child
fd(0) fd(1) fd(0) fd(1)

TS

© All Rights Reserved, Prof. Che-Wei Chang,

yf&%ﬁ 40

Department of Computer Science and Information Eng

Named Pipes

» Named Pipes are more powerful than ordinary pipes
» Communication is bidirectional

» No parent-child relationship Is necessary between the
communicating processes

» Several processes can use the named pipe for
communication

» Provided on both UNIX and Windows systems

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

