
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling
6. Synchronization
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems
12. Secondary-Storage Systems

 To introduce the notion of a process

 To describe the various features of processes, including

scheduling, creation and termination, and

communication

 To explore inter-process communication

 To describe communication in client-server systems

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A program is a passive entity stored on disk, and a

process is an active entity

◦ A program becomes process when the executable file is loaded

into memory

◦ The execution of a program started via GUI mouse clicks, the

command line entry of its name, etc.

◦ One program can be executed as several processes

 An operating system can execute a variety of programs
◦ In batch systems: jobs

◦ In time-shared systems: user programs or tasks

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 New: The process is being created

 Running: Instructions are being executed

 Waiting: The process is waiting for some event to

occur

 Ready: The process is waiting to be assigned to a

processor

 Terminated: The process has finished execution

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 PCB: The repository for any information that may vary
from process to process
◦ Process state– running, waiting, etc

◦ Program counter– location of the currently executed instruction

◦ CPU registers– contents of all process-centric registers

◦ CPU scheduling information– priorities, scheduling queue
pointers

◦ Memory-management information– memory allocated to the
process

◦ Accounting information– CPU used, clock time elapsed since
start, time limits

◦ I/O status information– I/O devices allocated to process, list of
opened files

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The goal of multiprogramming

◦ Maximize CPU/resource utilization

 The goal of time sharing

◦ Allow each user to interact with his/her program

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

head

tail

head

tail

head

tail

PCB3

Ready

Queue

Disk

Unit 0

Tape

Unit 1

PCB1 PCB2

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Long-term scheduler (or job scheduler)– selects

which processes should be brought into the ready queue

 Short-term scheduler (or CPU scheduler)– selects

which process should be executed next and allocates

CPU

 Medium-term scheduler can be added as swapper

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Processes can be described as either:

◦ I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts

◦ CPU-bound process – spends more time doing computations; few very

long CPU bursts

 Long-term scheduler strives for good process mix

 Remarks：
◦ Control the degree of multiprogramming

◦ Can take more time in selecting processes because of a longer interval

between executions

◦ May not exist physically

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

CPU

Memory

Job Pool
Utilization?

Utilization?

 Goal: To efficiently allocate the CPU to one of the

ready processes according to some criteria

 Short-term scheduler is invoked very frequently

(milliseconds) ➔ must be fast

 In Linux, after version 2.6.23, the scheduler is the

Completely Fair Scheduler (CFS)

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Goal: Remove process from memory, store on disk,

bring back in from disk to continue execution: it is also

called “swapping”

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Context Switch: Pure Overheads
◦ Save the state of the old process and load the state of the newly

scheduled process.

 The context of a process is usually reflected in PCB

 Issues:
◦ The cost depends on the hardware support

 e.g. processors with multiple register sets or computers with

advanced memory management

◦ Threads, i.e., light-weight process (LWP), are introduced to break

this bottleneck

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Parent processes create child processes, which in turn

create other processes, forming a tree of processes

 Generally, process identified and managed via a

process identifier (PID)

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

root

pagedaemon swapper init

user1 user2 user3

 Address Space

◦ Child duplicate of parent

◦ Child has a program loaded into it

 UNIX Examples
◦ fork() system call creates new process

◦ exec() system call used after a fork() to replace the process’

memory space with a new program

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Process executes last statement and asks the operating
system to delete it: exit()

◦ Wait the output data from child to parent: wait()

 Parent may terminate the execution of child processes:

abort()

➔Child has exceeded allocated resources

➔Task assigned to child is no longer required

◦ Receive the return value form child

◦ Some operating systems do not allow child to continue if its

parent terminates

 All children should be terminated - cascading termination

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Processes within a system may be independent or

cooperating

 Cooperating process can affect or be affected by other

processes, including sharing data

 Reasons for cooperating processes:

◦ Information sharing

◦ Computation speedup

◦ Modularity

◦ Convenience

 Cooperating processes need inter-process

communication (IPC)

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Shared Memory

◦ Max Speed & Communication Convenience

 Message Passing

◦ No Access Conflict & Easy Implementation

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A Consumer-Producer Example:

◦ Bounded buffer or unbounded buffer

 Supported by inter-process communication (IPC) or by hand

coding

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

z

0

1
2

n-1

n-2

in

out

buffer[0…n-1]

Initially, in=out=0

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

while (true)

{

while (in == out);

/* do nothing and have to wait */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

… /* use the consumed item */

}

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

while (true)

{

… /* produce a new item */

while (((in + 1) % BUFFER_SIZE) == out);

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER SIZE;

}

 Logical Implementation of Message Passing

◦ Fixed/variable message size

◦ Symmetric/asymmetric communication

◦ Direct/indirect communication

◦ Synchronous/asynchronous communication

◦ Automatic/explicit buffering

◦ Send by copy or reference

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Processes must name each other explicitly:
◦ send (P, message) – send a message to process P

◦ receive(Q, message) – receive a message from process Q

 Properties of the communication link

◦ Links are established automatically

◦ A link is associated with exactly one pair of communicating

processes

◦ Between each pair there exists exactly one link

◦ The link may be unidirectional, but is usually bi-directional

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Messages are directed and received from mailboxes

(also referred to as ports)
◦ send(A, message) – send a message to mailbox A

◦ receive(A, message) – receive a message from mailbox A

 Properties of the communication link

◦ Links are established only if processes share a common

mailbox

◦ A link may be associated with many processes

◦ Each pair of processes may share several communication

links

◦ Links may be unidirectional or bi-directional

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Mailbox sharing

◦ P1, P2, and P3 share mailbox A

◦ P1, sends; P2 and P3 receive

◦ Who gets the message?

 Solutions

◦ Allow a link to be associated with at most two processes

◦ Allow only one process at a time to execute a receive operation

◦ Allow the system to select arbitrarily the receiver

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

P1
messages ?

P2

P3

 Synchronous Message Passing IPC

◦ Blocking send has the sender block until the message is

received

◦ Blocking receive has the receiver block until a message is

available

 Asynchronous Message Passing IPC

◦ Non-blocking send has the sender send the message and

continue

◦ Non-blocking receive has the receiver receive a valid message

or null

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The capacity of a link: the number of messages could

be held in the link

◦ Zero capacity – 0 messages

 Sender must wait for receiver

◦ Bounded capacity – finite length of n messages

 Sender must wait if link is full

◦ Unbounded capacity – infinite length

 Sender never waits

 The last two items are for asynchronous

communication and may need acknowledgement

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 POSIX Shared Memory

◦ Process first creates shared memory segment

shm_fd = shm_open(name, O_CREAT | O_RDWR,

0666);

◦ Set the size of the object

ftruncate(shm_fd, 4096);

◦ Memory map the object

ptr = mmap(0,4096,PROT_WRITE,MAP_SHARED,

shm_fd, 0);

◦ Now the process could write to the shared memory

sprintf(ptr,"Writing to shared memory");

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Mach – A message-based OS from the Carnegie

Mellon University

◦ When a task is created, two special mailboxes, called ports,

are also created.

 The Kernel mailbox is used by the kernel to communicate

with the tasks

 The Notify mailbox is used by the kernel sends notification

of event occurrences.

 msg_send
◦ Options when mailbox is full:

 Wait indefinitely

 Return immediately

 Wait at most for n ms

 Temporarily cache a message: only one message to a full mailbox can be
pending at any time for a sending tread

 msg_receive
◦ Only one task can own & have a receiving privilege of a mailbox
◦ Options when mailbox is empty:

 Wait indefinitely

 Return immediately

 Wait at most for n ms

 msg_rpc
◦ Remote Procedure Calls

35
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Socket

◦ An endpoint for communication identified by an IP address

concatenated with a port number

 A client-server architecture

 /etc/services: 23-telnet, 21-ftp, 80-web server, etc.

36
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Socket
146.86.5.2:1652 Socket

161.25.19.8:80

Web server

Host X

 A way to abstract the procedure-call mechanism for use
between systems with network connection

 Stubs at the client site
◦ One for each RPC

◦ Locate the proper port and marshal parameters

 Stubs at the server site
◦ Receive the message
◦ Invoke the procedure and return the results

 Data representation handled via the External Data
Representation (XDL) format to account for different
architectures
◦ Big-endian and little-endian

37
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

38
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Get the port

Send the RPC

Get the results

39
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Acts as a conduit allowing two processes to

communicate

 Issues

◦ Is communication unidirectional or bidirectional?

◦ In the case of two-way communication, is it half-duplex or

full-duplex?

◦ Must there exist a relationship (i.e. parent-child) between the

communicating processes?

◦ Can the pipes be used over a network?

 Ordinary Pipes allow communication in the standard

producer-consumer style

 Producer writes to the write-end of the pipe

 Consumer reads from the read-end of the pipe

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating

processes

40
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the

communicating processes

 Several processes can use the named pipe for

communication

 Provided on both UNIX and Windows systems

41
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

