Operating System
Concepts

Che-Wel Chang
chewei@mail.cqu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Contents

Introduction

System Structures

Process Concept
Multithreaded Programming
Process Scheduling
Synchronization

Deadlocks
Memory-Management Strategies
Virtual-Memory Management
File System

Implementing File Systems
Secondary-Storage Systems

)

© 0 N o g B~ LD

el i
NS

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineerin

S,

g ==

=

g ;y)/
.’)" AR \
&

x&\&& @ﬁ/ﬁ

Chapter 4. Multithreaded
Programming

Objectives

» To Introduce the notion of a thread

» To discuss the APIs for the Pthreads, Windows, and
Java thread libraries

» To explore several strategies that provide implicit
threading

» To examine 1ssues related to multithreaded
programming

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Single and Multithreaded

Processes

code data files code data files
registers stack registers ||| reqisters ||| registers
stack stack stack

thread — ; <«—— thread

single-threaded process

multithreaded process

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Multithreaded Server Architecture

(2) create new
(1) request thread to service

the request
client > server » thread

(3) resume listening
for additional
client requests

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Motivation

» Most modern applications are multithreaded

» Multiple tasks with the application can be implemented
by separate threads
o Update display
o Fetch data
o Spell checking

» Process creation is heavy-weight while thread creation
IS light-weight

» Kernels are generally multithreaded

SB ity 7

b S

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Benefits

» Responsiveness

o |t allows a program to continue running even if part of it is
blocked or is performing a lengthy operation

» Resource Sharing

o Threads share resources of process, easier than shared memory
Or message passing

» Economy
o Thread creation Is cheaper than process creation
o Thread switching overhead is lower than context switching

» Scalability

o Threads can efficiently use multiprocessor architectures

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Multicore Programming

» Motivation: the popularity of multiple computing cores
per system
o Multithreaded Programming

» Challenges in Programming
Dividing Activities

Load Balancing

Data Splitting

Data Dependency

Testing and Debugging

o}

o

o}

o

o}

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

User Threads and Kernel Threads

» User threads
o Management done by user-level thread library
o Three primary thread libraries:
POSIX Pthreads
- WIin32 threads
- Java threads

» Kernel threads

o Supported by the Kernel

o Examples — virtually all general purpose operating systems,
Including:
- Windows, Solaris, Linux, Tru64 UNIX, Mac OS X

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Multithreading Models

» Relationship between user threads and kernel threads
o Many-to-One
> One-to-One
o Many-to-Many

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Many-to-One Model

» Many user threads to one
kernel thread

4 Advantage: g 3 g 54— user thread
o Efficiency
» Disadvantage:

> One blocking system call blocks
all

> No parallelism for multiple
Processors

» Example:

o Solaris Green Threads <— kernel thread
o GNU Portable Threads

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

One-to-One Model

» One user-level thread to one kernel thread

» Advantage: One system call blocks one thread

» Disadvantage: Overheads in creating a kernel thread
> Example: Windows NT/ZOOO/XP, Linux, Solaris 9

<«—— user thread

é é é é <«—— kernel thread

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Many-to-Many Model

» Many-to-Many Model
o Many user-level threads to many kernel threads

o Advantage: A combination of parallelism and efficiency
o Example: Solaris prior to version 9

;33

§<— user thread

<«—— kernel thread

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineer

Two-Level Model

» Similar to the many-to-many model, except that it
allows a user thread to be bound to a kernel thread
» Examples
o IRIX ; ;
RIX ; R
o Tru64 UNIX
> Solaris 8 and earlier

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Scheduler Activations

» Definition: A scheme for
the communication
between the user-thread
library and the kernel

> The kernel provides a set of
virtual processors, I.e., light

3 <«———yser thread

weight processes (LWP) < lightweight process
> User threads on a LWP are é)

blocked if any of the user «——kernel thread

threads is blocked!

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Thread Libraries

» The goal thread libraries is to provide an API for
creating and managing threads

» Two Approaches
o User Thread Library
o Kernel-Level Thread Library

» Well-Known Examples
o POSIX Pthread — User or Kernel Level

o WIn32 thread — Kernel Level

o Java thread — Level Depending on the Thread Library on the
Host System

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

A Pthread Example (1/3)

» The specification of the example program
> Read an input integer N
o Create a thread to calculate the summation from 1 to N
o Wait for the completion of the thread
o Print the result from the thread
» Now, let’s use the Pthread library to implement the
program

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

A Pthread Example (2/3)

#include <pthread.h> =k
#include <stdio.h> L

Include the header file of pthread }

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([]) Declare the function to be executed by the thread]

{

pthread_t tid; /* the thread identifier */
pthread attr_t attr; /* set of thread attributes */

if (arge !'= 2) { \L Create the data-structure to be used by the thread]

fprintf (stderr, "usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv[1]) < 0) {

fprintf (stderr,"’d must be >= 0\n",atoi(argv[i]));
return -1;

}

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineer

A Pthread Example (3/3)

/* get the default attributes */
pthread attr_init(&attr); <{ Initialize the data-structure to be used by the thread]
/* create the thread */
pthread create(&tid,&attr,runner,argv([1i]);
/* wait for the thread to exit */ ﬁ Create the thread }
pthread_join(tid,NULL);

Wait for the completion of the thread J

printf ("sum = %d\n",sum);

}

/* The thread will begin control in this function */

void *runner(void *param) ; i

{ :| Define the function to be executed by the thread]
int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread exit(0);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineer

Compiling POSIX-Thread Programs

INTEL icc -pthread

Linux icpc -pthread

PGI pgcc -Ipthread
Linux pgCC -Ipthread
GNU gcc -Ipthread
Linux, Blue Gene g++ -Ipthread

IBM bgxlc_r / bgcc_r
Blue Gene bgxIC_r, bgxlc++ r

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung

C

C++

C

C++

GNU C

GNU C++

C (ANSI / non-ANSI)
C++

Implicit Threading

» Implicit threading is growing in popularity as numbers
of threads increase

» Program correctness is more difficult with explicit
threads

» Creation and management of threads done by compilers
and run-time libraries rather than programmers
» Examples

> OpenMP on Linux, Windows and Mac OS X
o Grand Central Dispatch on Mac OS X

© All Rights Reserved, Prof. Che-Wei Chang, = Bl £ 8y o

Department of Computer Science and Information

Threading Issues

» Semantics of fork() and exec() system calls

» Signal handling
o Synchronous and asynchronous

» Thread cancellation of target thread
> Asynchronous or deferred

» Thread-local storage
» Scheduler activations

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

Fork and Exec System Calls

» When a process consists of multiple threads, does
fork () duplicate only the calling thread or all threads?

o Some UNIX systems have two versions of fork()

» exec () usually works as normal- replaces the running
process including all threads

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Signal Handling

» Two Types of Signals

o Synchronous signal— should be delivered to the same process
that performed the operation causing the signal
e.g., illegal memory access or division by zero
o Asynchronous signal— can happen at any time point
e.g., “C or timer expiration

» Delivery of a Signal
o To the thread to which the signal applies
e.g., division-by-zero
> To every threads in the process
e.g., "C
o To certain threads in the process
o Assign a specific thread to receive all signals for the process

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information

== \ » ﬁ: 22 25

Thread Cancellation

» A cancellation signal iIs sent to the target thread

» Two scenarios for the cancellation:
> Asynchronous cancellation
- Immediate cancel the thread
o Deferred cancellation

- Wait until some special point of the thread, e.g., cancellation
points in Pthread

» Difficulty
o Resources have been allocated to a cancelled thread
o Athread is cancelled while it is updating data

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Thread-Local Storage

» Thread-local storage (TLS) allows each thread to have
Its own copy of data
» Different from local variables

o Local variables visible only during single function invocation
o TLS visible across function invocations

» Similar to static data
o TLS is unique to each thread

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Windows Threads

» Windows implements the Windows API- primary APl for Win
98, Win NT, Win 2000, Win XP, Win 7, Win 8, and Win 10

» It Implements the one-to-one mapping

» Each thread contains
o Athread id
o Register set representing state of processor

o Separate user and kernel stacks for when thread runs in user mode or
kernel mode

o Private data storage area used by run-time libraries and dynamic link
libraries (DLLs)

» The register set, stacks, and private storage area are known as
the context of a thread

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information 28

Linux Threads

» The concepts of threads was introduced in version 2.2

» In Linux
o Processes and threads are called tasks
o Any task has a PID (process identifier)

o |f two tasks do not share any data-structure, they are two
processes

o |f two tasks share some data-structure, they just like two
threads in the same process

o fork() is used to create a new process
o clone() Is used to create a new thread

Flag setting in clone() invocation: CLONE_FS, CLONE_VM,
CLONE_SIGHAND, CLONE_FILES

© All Rights Reserved, Prof. Che-Wei Chang,

== \ » ﬁ: 2 2% 29

Department of Computer Science and Information

