
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information 

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw


2
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling 
6. Synchronization 
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems 
12. Secondary-Storage Systems





 To introduce the notion of a thread

 To discuss the APIs for the Pthreads, Windows, and 

Java thread libraries

 To explore several strategies that provide implicit 

threading

 To examine issues related to multithreaded 

programming

4
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



5
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



6
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Most modern applications are multithreaded

 Multiple tasks with the application can be implemented 

by separate threads

◦ Update display

◦ Fetch data

◦ Spell checking

 Process creation is heavy-weight while thread creation 

is light-weight

 Kernels are generally multithreaded

7
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Responsiveness 

◦ It allows a program to continue running even if part of it is 

blocked or is performing a lengthy operation

 Resource Sharing

◦ Threads share resources of process, easier than shared memory 

or message passing

 Economy

◦ Thread creation is cheaper than process creation

◦ Thread switching overhead is lower than context switching

 Scalability

◦ Threads can efficiently use multiprocessor architectures

8
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Motivation: the popularity of multiple computing cores 

per system

◦ Multithreaded Programming

 Challenges in Programming

◦ Dividing Activities

◦ Load Balancing

◦ Data Splitting 

◦ Data Dependency

◦ Testing and Debugging

9
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 User threads

◦ Management done by user-level thread library

◦ Three primary thread libraries:

 POSIX Pthreads

 Win32 threads

 Java threads

 Kernel threads

◦ Supported by the Kernel

◦ Examples – virtually all general purpose operating systems, 

including:

 Windows, Solaris, Linux, Tru64 UNIX, Mac OS X

10
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Relationship between user threads and kernel threads

◦ Many-to-One

◦ One-to-One

◦ Many-to-Many

11
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Many user threads to one 
kernel thread

 Advantage: 
◦ Efficiency

 Disadvantage: 
◦ One blocking system call blocks 

all

◦ No parallelism for multiple 
processors

 Example: 
◦ Solaris Green Threads

◦ GNU Portable Threads

12
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 One user-level thread to one kernel thread

 Advantage: One system call blocks one thread

 Disadvantage: Overheads in creating a kernel thread

 Example: Windows NT/2000/XP, Linux, Solaris 9

13
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Many-to-Many Model

◦ Many user-level threads to many kernel threads

◦ Advantage: A combination of parallelism and efficiency

◦ Example: Solaris prior to version 9

14
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Similar to the many-to-many model, except that it 

allows a user thread to be bound to a kernel thread

 Examples

◦ IRIX

◦ HP-UX

◦ Tru64 UNIX

◦ Solaris 8 and earlier

15
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Definition: A scheme for 

the communication 

between the user-thread 

library and the kernel

◦ The kernel provides a set of 

virtual processors, i.e., light 

weight processes (LWP) 

◦ User threads on a LWP are 

blocked if any of the user 

threads is blocked!

16
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 The goal thread libraries is to provide an API for 

creating and managing threads

 Two Approaches

◦ User Thread Library

◦ Kernel-Level Thread Library

 Well-Known Examples

◦ POSIX Pthread – User or Kernel Level

◦ Win32 thread – Kernel Level 

◦ Java thread – Level Depending on the Thread Library on the 

Host System

17
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 The specification of the example program

◦ Read an input integer N

◦ Create a thread to calculate the summation from 1 to N

◦ Wait for the completion of the thread

◦ Print the result from the thread

 Now, let’s use the Pthread library to implement the 

program

18
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



19
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University

Declare the function to be executed by the thread

Include the header file of pthread

Create the data-structure to be used by the thread



20
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University

Initialize the data-structure to be used by the thread

Create the thread

Wait for the completion of the thread

Define the function to be executed by the thread



21
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University

Compiler / Platform Compiler Command Description

INTEL

Linux

icc -pthread C

icpc -pthread C++

PGI

Linux

pgcc -lpthread C

pgCC -lpthread C++

GNU

Linux, Blue Gene

gcc -lpthread GNU C

g++ -lpthread GNU C++

IBM

Blue Gene

bgxlc_r / bgcc_r C (ANSI / non-ANSI)

bgxlC_r, bgxlc++_r C++



 Implicit threading is growing in popularity as numbers 

of threads increase

 Program correctness is more difficult with explicit 

threads

 Creation and management of threads done by compilers 

and run-time libraries rather than programmers

 Examples

◦ OpenMP on Linux, Windows and Mac OS X

◦ Grand Central Dispatch on Mac OS X

22
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Semantics of fork() and exec() system calls

 Signal handling

◦ Synchronous and asynchronous

 Thread cancellation of target thread

◦ Asynchronous or deferred

 Thread-local storage

 Scheduler activations

23
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 When a process consists of multiple threads, does 
fork()duplicate only the calling thread or all threads?

◦ Some UNIX systems have two versions of fork()

 exec()usually works as normal– replaces the running 

process including all threads

24
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Two Types of Signals
◦ Synchronous signal– should be delivered to the same process 

that performed the operation causing the signal

 e.g., illegal memory access or division by zero

◦ Asynchronous signal– can happen at any time point

 e.g., ^C or timer expiration

 Delivery of a Signal 
◦ To the thread to which the signal applies

 e.g., division-by-zero

◦ To every threads in the process

 e.g., ^C

◦ To certain threads in the process

◦ Assign a specific thread to receive all signals for the process

25
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 A cancellation signal is sent to the target thread

 Two scenarios for the cancellation:

◦ Asynchronous cancellation

 Immediate cancel the thread

◦ Deferred cancellation

 Wait until some special point of the thread, e.g., cancellation 

points in Pthread

 Difficulty

◦ Resources have been allocated to a cancelled thread

◦ A thread is cancelled while it is updating data

26
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Thread-local storage (TLS) allows each thread to have 

its own copy of data

 Different from local variables

◦ Local variables visible only during single function invocation

◦ TLS visible across function invocations

 Similar to static data

◦ TLS is unique to each thread

27
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Windows implements the Windows API– primary API for Win 

98, Win NT, Win 2000, Win XP, Win 7, Win 8, and Win 10

 It implements the one-to-one mapping

 Each thread contains

◦ A thread id

◦ Register set representing state of processor

◦ Separate user and kernel stacks for when thread runs in user mode or 

kernel mode

◦ Private data storage area used by run-time libraries and dynamic link 

libraries (DLLs)

 The register set, stacks, and private storage area are known as 

the context of a thread

28
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 The concepts of threads was introduced in version 2.2

 In Linux

◦ Processes and threads are called tasks

◦ Any task has a PID (process identifier)

◦ If two tasks do not share any data-structure, they are two 

processes

◦ If two tasks share some data-structure, they just like two 

threads in the same process

◦ fork() is used to create a new process

◦ clone() is used to create a new thread

 Flag setting in clone() invocation: CLONE_FS, CLONE_VM, 

CLONE_SIGHAND, CLONE_FILES

29
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University


