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 To introduce the notion of a thread

 To discuss the APIs for the Pthreads, Windows, and 

Java thread libraries

 To explore several strategies that provide implicit 

threading

 To examine issues related to multithreaded 

programming
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 Most modern applications are multithreaded

 Multiple tasks with the application can be implemented 

by separate threads

◦ Update display

◦ Fetch data

◦ Spell checking

 Process creation is heavy-weight while thread creation 

is light-weight

 Kernels are generally multithreaded
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 Responsiveness 

◦ It allows a program to continue running even if part of it is 

blocked or is performing a lengthy operation

 Resource Sharing

◦ Threads share resources of process, easier than shared memory 

or message passing

 Economy

◦ Thread creation is cheaper than process creation

◦ Thread switching overhead is lower than context switching

 Scalability

◦ Threads can efficiently use multiprocessor architectures
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 Motivation: the popularity of multiple computing cores 

per system

◦ Multithreaded Programming

 Challenges in Programming

◦ Dividing Activities

◦ Load Balancing

◦ Data Splitting 

◦ Data Dependency

◦ Testing and Debugging
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 User threads

◦ Management done by user-level thread library

◦ Three primary thread libraries:

 POSIX Pthreads

 Win32 threads

 Java threads

 Kernel threads

◦ Supported by the Kernel

◦ Examples – virtually all general purpose operating systems, 

including:

 Windows, Solaris, Linux, Tru64 UNIX, Mac OS X
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 Relationship between user threads and kernel threads

◦ Many-to-One

◦ One-to-One

◦ Many-to-Many
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 Many user threads to one 
kernel thread

 Advantage: 
◦ Efficiency

 Disadvantage: 
◦ One blocking system call blocks 

all

◦ No parallelism for multiple 
processors

 Example: 
◦ Solaris Green Threads

◦ GNU Portable Threads
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 One user-level thread to one kernel thread

 Advantage: One system call blocks one thread

 Disadvantage: Overheads in creating a kernel thread

 Example: Windows NT/2000/XP, Linux, Solaris 9
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 Many-to-Many Model

◦ Many user-level threads to many kernel threads

◦ Advantage: A combination of parallelism and efficiency

◦ Example: Solaris prior to version 9
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 Similar to the many-to-many model, except that it 

allows a user thread to be bound to a kernel thread

 Examples

◦ IRIX

◦ HP-UX

◦ Tru64 UNIX

◦ Solaris 8 and earlier
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 Definition: A scheme for 

the communication 

between the user-thread 

library and the kernel

◦ The kernel provides a set of 

virtual processors, i.e., light 

weight processes (LWP) 

◦ User threads on a LWP are 

blocked if any of the user 

threads is blocked!
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 The goal thread libraries is to provide an API for 

creating and managing threads

 Two Approaches

◦ User Thread Library

◦ Kernel-Level Thread Library

 Well-Known Examples

◦ POSIX Pthread – User or Kernel Level

◦ Win32 thread – Kernel Level 

◦ Java thread – Level Depending on the Thread Library on the 

Host System
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 The specification of the example program

◦ Read an input integer N

◦ Create a thread to calculate the summation from 1 to N

◦ Wait for the completion of the thread

◦ Print the result from the thread

 Now, let’s use the Pthread library to implement the 

program
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Declare the function to be executed by the thread

Include the header file of pthread

Create the data-structure to be used by the thread
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Initialize the data-structure to be used by the thread

Create the thread

Wait for the completion of the thread

Define the function to be executed by the thread
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Compiler / Platform Compiler Command Description

INTEL

Linux

icc -pthread C

icpc -pthread C++

PGI

Linux

pgcc -lpthread C

pgCC -lpthread C++

GNU

Linux, Blue Gene

gcc -lpthread GNU C

g++ -lpthread GNU C++

IBM

Blue Gene

bgxlc_r / bgcc_r C (ANSI / non-ANSI)

bgxlC_r, bgxlc++_r C++



 Implicit threading is growing in popularity as numbers 

of threads increase

 Program correctness is more difficult with explicit 

threads

 Creation and management of threads done by compilers 

and run-time libraries rather than programmers

 Examples

◦ OpenMP on Linux, Windows and Mac OS X

◦ Grand Central Dispatch on Mac OS X
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 Semantics of fork() and exec() system calls

 Signal handling

◦ Synchronous and asynchronous

 Thread cancellation of target thread

◦ Asynchronous or deferred

 Thread-local storage

 Scheduler activations
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 When a process consists of multiple threads, does 
fork()duplicate only the calling thread or all threads?

◦ Some UNIX systems have two versions of fork()

 exec()usually works as normal– replaces the running 

process including all threads
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 Two Types of Signals
◦ Synchronous signal– should be delivered to the same process 

that performed the operation causing the signal

 e.g., illegal memory access or division by zero

◦ Asynchronous signal– can happen at any time point

 e.g., ^C or timer expiration

 Delivery of a Signal 
◦ To the thread to which the signal applies

 e.g., division-by-zero

◦ To every threads in the process

 e.g., ^C

◦ To certain threads in the process

◦ Assign a specific thread to receive all signals for the process

25
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 A cancellation signal is sent to the target thread

 Two scenarios for the cancellation:

◦ Asynchronous cancellation

 Immediate cancel the thread

◦ Deferred cancellation

 Wait until some special point of the thread, e.g., cancellation 

points in Pthread

 Difficulty

◦ Resources have been allocated to a cancelled thread

◦ A thread is cancelled while it is updating data
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 Thread-local storage (TLS) allows each thread to have 

its own copy of data

 Different from local variables

◦ Local variables visible only during single function invocation

◦ TLS visible across function invocations

 Similar to static data

◦ TLS is unique to each thread
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 Windows implements the Windows API– primary API for Win 

98, Win NT, Win 2000, Win XP, Win 7, Win 8, and Win 10

 It implements the one-to-one mapping

 Each thread contains

◦ A thread id

◦ Register set representing state of processor

◦ Separate user and kernel stacks for when thread runs in user mode or 

kernel mode

◦ Private data storage area used by run-time libraries and dynamic link 

libraries (DLLs)

 The register set, stacks, and private storage area are known as 

the context of a thread
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 The concepts of threads was introduced in version 2.2

 In Linux

◦ Processes and threads are called tasks

◦ Any task has a PID (process identifier)

◦ If two tasks do not share any data-structure, they are two 

processes

◦ If two tasks share some data-structure, they just like two 

threads in the same process

◦ fork() is used to create a new process

◦ clone() is used to create a new thread

 Flag setting in clone() invocation: CLONE_FS, CLONE_VM, 

CLONE_SIGHAND, CLONE_FILES
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