
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information 

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw


2
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling 
6. Synchronization 
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems 
12. Secondary-Storage Systems





 To introduce the notion of a thread

 To discuss the APIs for the Pthreads, Windows, and 

Java thread libraries

 To explore several strategies that provide implicit 

threading

 To examine issues related to multithreaded 

programming

4
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



5
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



6
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Most modern applications are multithreaded

 Multiple tasks with the application can be implemented 

by separate threads

◦ Update display

◦ Fetch data

◦ Spell checking

 Process creation is heavy-weight while thread creation 

is light-weight

 Kernels are generally multithreaded

7
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Responsiveness 

◦ It allows a program to continue running even if part of it is 

blocked or is performing a lengthy operation

 Resource Sharing

◦ Threads share resources of process, easier than shared memory 

or message passing

 Economy

◦ Thread creation is cheaper than process creation

◦ Thread switching overhead is lower than context switching

 Scalability

◦ Threads can efficiently use multiprocessor architectures

8
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Motivation: the popularity of multiple computing cores 

per system

◦ Multithreaded Programming

 Challenges in Programming

◦ Dividing Activities

◦ Load Balancing

◦ Data Splitting 

◦ Data Dependency

◦ Testing and Debugging

9
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 User threads

◦ Management done by user-level thread library

◦ Three primary thread libraries:

 POSIX Pthreads

 Win32 threads

 Java threads

 Kernel threads

◦ Supported by the Kernel

◦ Examples – virtually all general purpose operating systems, 

including:

 Windows, Solaris, Linux, Tru64 UNIX, Mac OS X

10
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Relationship between user threads and kernel threads

◦ Many-to-One

◦ One-to-One

◦ Many-to-Many

11
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Many user threads to one 
kernel thread

 Advantage: 
◦ Efficiency

 Disadvantage: 
◦ One blocking system call blocks 

all

◦ No parallelism for multiple 
processors

 Example: 
◦ Solaris Green Threads

◦ GNU Portable Threads

12
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 One user-level thread to one kernel thread

 Advantage: One system call blocks one thread

 Disadvantage: Overheads in creating a kernel thread

 Example: Windows NT/2000/XP, Linux, Solaris 9

13
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Many-to-Many Model

◦ Many user-level threads to many kernel threads

◦ Advantage: A combination of parallelism and efficiency

◦ Example: Solaris prior to version 9

14
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Similar to the many-to-many model, except that it 

allows a user thread to be bound to a kernel thread

 Examples

◦ IRIX

◦ HP-UX

◦ Tru64 UNIX

◦ Solaris 8 and earlier

15
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Definition: A scheme for 

the communication 

between the user-thread 

library and the kernel

◦ The kernel provides a set of 

virtual processors, i.e., light 

weight processes (LWP) 

◦ User threads on a LWP are 

blocked if any of the user 

threads is blocked!

16
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 The goal thread libraries is to provide an API for 

creating and managing threads

 Two Approaches

◦ User Thread Library

◦ Kernel-Level Thread Library

 Well-Known Examples

◦ POSIX Pthread – User or Kernel Level

◦ Win32 thread – Kernel Level 

◦ Java thread – Level Depending on the Thread Library on the 

Host System

17
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 The specification of the example program

◦ Read an input integer N

◦ Create a thread to calculate the summation from 1 to N

◦ Wait for the completion of the thread

◦ Print the result from the thread

 Now, let’s use the Pthread library to implement the 

program

18
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



19
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University

Declare the function to be executed by the thread

Include the header file of pthread

Create the data-structure to be used by the thread



20
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University

Initialize the data-structure to be used by the thread

Create the thread

Wait for the completion of the thread

Define the function to be executed by the thread



21
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University

Compiler / Platform Compiler Command Description

INTEL

Linux

icc -pthread C

icpc -pthread C++

PGI

Linux

pgcc -lpthread C

pgCC -lpthread C++

GNU

Linux, Blue Gene

gcc -lpthread GNU C

g++ -lpthread GNU C++

IBM

Blue Gene

bgxlc_r / bgcc_r C (ANSI / non-ANSI)

bgxlC_r, bgxlc++_r C++



 Implicit threading is growing in popularity as numbers 

of threads increase

 Program correctness is more difficult with explicit 

threads

 Creation and management of threads done by compilers 

and run-time libraries rather than programmers

 Examples

◦ OpenMP on Linux, Windows and Mac OS X

◦ Grand Central Dispatch on Mac OS X

22
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Semantics of fork() and exec() system calls

 Signal handling

◦ Synchronous and asynchronous

 Thread cancellation of target thread

◦ Asynchronous or deferred

 Thread-local storage

 Scheduler activations

23
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 When a process consists of multiple threads, does 
fork()duplicate only the calling thread or all threads?

◦ Some UNIX systems have two versions of fork()

 exec()usually works as normal– replaces the running 

process including all threads

24
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Two Types of Signals
◦ Synchronous signal– should be delivered to the same process 

that performed the operation causing the signal

 e.g., illegal memory access or division by zero

◦ Asynchronous signal– can happen at any time point

 e.g., ^C or timer expiration

 Delivery of a Signal 
◦ To the thread to which the signal applies

 e.g., division-by-zero

◦ To every threads in the process

 e.g., ^C

◦ To certain threads in the process

◦ Assign a specific thread to receive all signals for the process

25
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 A cancellation signal is sent to the target thread

 Two scenarios for the cancellation:

◦ Asynchronous cancellation

 Immediate cancel the thread

◦ Deferred cancellation

 Wait until some special point of the thread, e.g., cancellation 

points in Pthread

 Difficulty

◦ Resources have been allocated to a cancelled thread

◦ A thread is cancelled while it is updating data

26
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Thread-local storage (TLS) allows each thread to have 

its own copy of data

 Different from local variables

◦ Local variables visible only during single function invocation

◦ TLS visible across function invocations

 Similar to static data

◦ TLS is unique to each thread

27
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Windows implements the Windows API– primary API for Win 

98, Win NT, Win 2000, Win XP, Win 7, Win 8, and Win 10

 It implements the one-to-one mapping

 Each thread contains

◦ A thread id

◦ Register set representing state of processor

◦ Separate user and kernel stacks for when thread runs in user mode or 

kernel mode

◦ Private data storage area used by run-time libraries and dynamic link 

libraries (DLLs)

 The register set, stacks, and private storage area are known as 

the context of a thread

28
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 The concepts of threads was introduced in version 2.2

 In Linux

◦ Processes and threads are called tasks

◦ Any task has a PID (process identifier)

◦ If two tasks do not share any data-structure, they are two 

processes

◦ If two tasks share some data-structure, they just like two 

threads in the same process

◦ fork() is used to create a new process

◦ clone() is used to create a new thread

 Flag setting in clone() invocation: CLONE_FS, CLONE_VM, 

CLONE_SIGHAND, CLONE_FILES

29
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University


