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 To introduce CPU scheduling, which is the basis for 

multi-programmed operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU

scheduling algorithm for a particular system

 To examine the scheduling algorithms of several 

operating systems
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 CPU–I/O Burst Cycle 

◦ Process execution consists of a 

cycle of CPU execution and I/O 

waiting 

 Process Execution

◦ CPU-bound programs tend to 

have a few very long CPU bursts

◦ IO-bound programs tend to have 

many very short CPU bursts
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 The distribution can help in selecting an appropriate 

CPU scheduling algorithms
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 Short-term scheduler selects a process among the 
processes in the ready queue, and allocates the CPU to 
the selected process
◦ Queue may be ordered in various ways

 CPU scheduling decisions may take place when a 
process:
1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

7
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University



 Dispatcher module gives control of the CPU to the 

process selected by the short-term scheduler

◦ switching context

◦ switching to user mode

◦ jumping to the proper location in the user program to resume 

that process

 Dispatch latency – the time it takes for the dispatcher to 

stop one process and start another running
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 Why?

◦ Different scheduling algorithms may favor one class of 

processes over another

 Criteria

◦ CPU Utilization

◦ Throughput

◦ Turnaround Time: (Completion Time) – (Start Time)

◦ Waiting Time: Waiting in the Ready Queue

◦ Response Time: First Response Time
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 First-Come, First-Served Scheduling (FIFO)

 Shortest-Job-First Scheduling (SJF)

 Priority Scheduling

 Round-Robin Scheduling (RR)

 Multilevel Queue Scheduling

 Multilevel Feedback Queue Scheduling

 Multiple-Processor Scheduling
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 The process which requests the CPU first is allocated 

the CPU

 Properties:

◦ Non-preemptive scheduling

◦ CPU might be hold for an extended period
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CPU

request
A FIFO ready queue Dispatched

process



Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3  

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time:  (0 + 24 + 27)/3 = 17
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P1 P2 P3

24 27 300



 Suppose that the processes arrive in the order:

◦ P2 , P3 , P1 

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time:   (6 + 0 + 3)/3 = 3

 Convoy effect – short processes behind long a process
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P1P3P2

63 300



Processrriva Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7
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P3P1

3 160 9
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24



 Non-preemptive SJF scheduling is optimal when 
processes are all ready at time 0
◦ The minimum average waiting time

 It is difficult to know the length of the next CPU 
request
◦ Prediction of the next CPU burst time using exponential 

averaging
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 Preemptive or Non-preemptive?

◦ Criteria such as AWT (Average Waiting Time)
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0 10

1 10 11

Non-preemptive

AWT = (0+(10-1))/2

= 9/2 = 4.5

or

0

1 2

11 Preemptive AWT

= ((2-1)+0) = 0.5

Shortest-Remaining-Time-First Scheduling



 A priority number (integer) is associated with each 

process

 The CPU is allocated to the process with the highest 

priority 

 Priority Assignment

◦ Internally defined – use some measurable quantity, such as the 

number of open files,

◦ Externally defined – set by criteria external to the OS, such as 

the criticality levels of jobs
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Average CPU Burst
Average I/O Burst
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Process

P1

P2

P3

P4

P5

CPU Burst Time

10

1

2

1

5

Priority

3

1

3

4

2

Gantt Graph

Average waiting time = (6+0+16+18+1)/5 = 8.2

P2 P3P5

1 180 16

P4

196

P1



 Problem: Starvation – low priority processes may never 

execute

 Solution: Aging – as time progresses increase the 

priority of the process

 A Special Case: SJF is priority scheduling where 

priority is the inverse of predicted next CPU burst time
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 Each process gets a small unit of CPU time (time 

quantum) 

 After this time has elapsed, the process is preempted 

and added to the end of the ready queue

 If there are n processes in the ready queue and the 

time quantum is q
◦ Each process gets 1/n of the CPU time in chunks of at most q

time units at once

◦ No process waits more than (n-1)q time units
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Process

P1

P2

P3

CPU Burst Time

24

3

3

Time slice = 4

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

AWT = ((10-4) + (4-0) + (7-0))/3 = 17/3 = 5.66
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 Time quantum too large → FIFO

 Time quantum too small → Time quantum must be 

large with respect to context switch time, otherwise 

overhead is too high

◦ Time quantum usually 10 ms to 100ms

◦ Context switch < 10 μs

 A rule of thumb is that 80 percent of the CPU bursts 

should be shorter than the time quantum
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process (10ms)

P1

P2

P3
20 30

10 20

0 10

quantum = 10 quantum = 1

Average Turnaround Time

= (10+20+30)/3 = 20
ATT = (28+29+30)/3 = 29

=> 80% CPU Burst < time slice

0 10 20 30

0 10 20 30

0 10 20 30



 Partition the ready queue into several separate queues 

➔ Processes can be classified into different groups and    

permanently assigned to one queue
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 Intra-queue scheduling

◦ Independent choice of scheduling algorithms

 e. g., foreground – RR, and background – FCFS

 Inter-queue scheduling

◦ Fixed-priority preemptive scheduling

 e.g., foreground queues always have absolute priority over the 

background queues

◦ Time slice between queues

 e.g., 80% CPU is given to foreground processes, and 20% CPU to 

background processes
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 A process can move between the various queues

◦ Aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by the 

following parameters:

◦ number of queues

◦ scheduling algorithms for each queue

◦ method used to determine when to upgrade a process

◦ method used to determine when to demote a process

◦ The method to determine which queue a newly ready process 

will enter
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 Three queues: 

◦ Q0 – RR with time quantum 8 milliseconds

◦ Q1 – RR time quantum 16 milliseconds

◦ Q2 – FCFS

 Scheduling

◦ Do jobs in Q0 first and then Q1 and then Q2 

◦ A new job enters queue Q0

 When it gains CPU, job receives 8 

milliseconds

 If it does not finish in 8 milliseconds, job is 

moved to queue Q1

◦ At Q1 each job receives 16 additional 

milliseconds

 If it still does not complete, it is preempted 

and moved to queue Q2
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 To run on a CPU, user threads must be mapped to an 

associated kernel thread 

 Local Scheduling

◦ Contention Scope: Process-Contention Scope (PCS)

◦ How the threads library decides which thread to put onto an 

available kernel thread 

 Global Scheduling

◦ Contention Scope: System-Contention Scope (SCS) 

◦ How the kernel decides which kernel thread to run on CPU 

next
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 CPU scheduling in a system with multiple CPUs

 A Homogeneous System

◦ Processors are identical in terms of their functionality

 A Heterogeneous System 

◦ Programs must be compiled for instructions on proper 

processors
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 Asymmetric multiprocessing – only one processor 

accesses the system data structures, alleviating the need 

for data sharing

 Symmetric multiprocessing (SMP) – each processor 

is self-scheduling, all processes in common ready 

queue, or each processor has its own private queue of 

ready processes
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 A process might prefer to run on specific processors
◦ Hard affinity: sched_setaffinity()

◦ Soft affinity: non-uniform memory access
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 Attempt to keep the workload evenly distributed across 

all processors in an SMP system 

 Push migration

◦ A specific task periodically checks the load on each processor 

and evenly distributes the load by moving processes from 

overloaded to idle or less-busy processors 

 Pull migration

◦ An idle processor pulls a waiting task from a busy processor 
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 Multicore Processor: A physical chip with multiple 

processor cores.

 Scheduling Issues:

◦ Memory Stall

 Coarse-Grained Multithreading

 Thread execution until a long latency

 Fine-Grained Multithreading

 Better architecture design for switching

→Multiple Hardware Threads
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 Each task (process) has to be completed before its 

deadline

 Soft real-time systems – try to serve a real-time task 

by its deadline

 Hard real-time systems – a real-time task must be 

served by its deadline

 Two types of latencies affect performance

1.Interrupt latency – time from arrival of interrupt to start of 

routine that serves the interrupt

2.Dispatch latency – time for schedule to take current process off 

CPU and switch to another
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 Completely Fair Scheduler (CFS)
◦ CFS scheduler maintains per task virtual run time in variable 
vruntime

◦ Associated with decay factor based on priority of task: 

 lower priority ➔ higher decay rate

◦ Normal default priority yields virtual run time = actual run 
time

◦ To decide next task to run, scheduler picks task with lowest 
virtual run time

 Nice Value
◦ From -20 to +19

◦ Lower value is higher priority
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 A red-back tree is used to maintain the virtual run times 

of tasks
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 Real-time scheduling according to POSIX

◦ Real-time tasks have static priorities

 Real-time plus normal map into global priority scheme

 Nice value of -20 maps to global priority 100

 Nice value of +19 maps to priority 139
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Real-

time

High Above 

normal

Normal Below 

normal

Idle 

priority

Time-

critical
31 15 15 15 15 15

Highest 26 15 12 10 8 6

Above 

normal
25 14 11 9 7 5

Normal 24 13 10 8 6 4

Below 

normal
23 12 9 7 5 3

Lowest 22 11 8 6 4 2

Idle 16 1 1 1 1 1

Variable Class (1..15)
Real-Time Class

Base

Priority

A Typical Class



 Priority-Based Preemptive Scheduling

◦ Priority Range: from 0 to 31

 Variable class uses 1-15

 Real-time class uses 16-31

◦ Dispatcher: A process runs until

 It is preempted by a higher-priority process

 It terminates

 Its time quantum ends

 It calls a blocking system call

◦ Idle thread

 A Queue per Priority Level
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 Each thread has a base priority that represents a value 
in the priority range of its class

 Priority Changing
◦ Increased after some waiting

 Different amount for different I/O devices

◦ Decreased after some computation

 The priority is never lowered below the base priority

 Favor foreground processes 
◦ Each foreground task is given more time quantum (typically 3 

times longer)
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 A General Procedure
◦ Select criteria that may include several measures, e.g., 

maximize CPU utilization while confining the maximum 
response time to 1 second

◦ Evaluate various algorithms

 Evaluation Methods:
◦ Deterministic modeling

◦ Queuing models

◦ Simulation

◦ Implementation
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 A Typical Type of Analytic Evaluation
◦ Take a particular predetermined workload and defines the 

performance of each algorithm for that workload

 Properties
◦ Simple and fast

◦ Through excessive executions of a number of examples, trends 
might be identified

◦ But it needs exact numbers for inputs, and its answers only 
apply to those cases

 Being too specific and requires too exact knowledge to be useful
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process

P1

P2

P3

P4

P5

CPU Burst time

10

29

3

7

12

P3 P5 P2

0 10 20 613

P4 P1

32

Nonpreemptive Shortest Job First

P1 P2

0 10 20 40 50 61

P2

23

P4 P5

30

P2 P5

52

Round Robin (quantum =10)

P1

0 10 39 42 49 61

FCFS

Average Waiting Time (AWT)=(0+10+39+42+49)/5=28

AWT=(10+32+0+3+20)/5=13

AWT=(0+(10+20+2)+20+23+(30+10))/5=23

P2 P3 P4 P5

P3



 Motivation:

◦ Workloads vary, and there is no static set of processes

 Models (~ Queuing-Network Analysis)

◦ Workload:

 Arrival rate: the distribution of times when processes arrive

 The distributions of CPU & I/O bursts

◦ Service rate
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 Motivation: 

◦ Get a more accurate evaluation

 Procedures:

◦ Program a model of the computer system 

◦ Drive the simulation with various data sets

 Randomly generated according to some probability distributions

➔ Inaccuracy occurs because of only the occurrence frequency of 

events. Miss the order & the relationships of events.

 Trace tapes: monitor the real system & record the sequence of 

actual events.
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 Motivation: 

◦ Get more accurate results than a simulation

 Procedure:

◦ Code scheduling algorithms 

◦ Put them in the OS

◦ Evaluate the real behaviors

 Difficulties:
◦ Cost in coding algorithms and modifying the OS

◦ Reaction of users to a constantly changing the OS

◦ The environment in which algorithms are used will change
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