Operating System
Concepts

Che-Wel Chang
chewei@mail.cqu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Contents

Introduction

System Structures

Process Concept
Multithreaded Programming
Process Scheduling
Synchronization

Deadlocks
Memory-Management Strategies
Virtual-Memory Management
File System

Implementing File Systems
Secondary-Storage Systems

© 0 N o g B~ LD

el i
N = O

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineerin

Chapter 5. Process
Scheduling

Objectives

» To introduce CPU scheduling, which is the basis for
multi-programmed operating systems

» To describe various CPU-scheduling algorithms

» To discuss evaluation criteria for selecting a CPU
scheduling algorithm for a particular system

» To examine the scheduling algorithms of several
operating systems

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Basic Concepts

» CPU-I1/O Burst Cycle

o Process execution consists of a
cycle of CPU execution and 1/0
waiting

» Process Execution

o CPU-bound programs tend to
have a few very long CPU bursts

> 10-bound programs tend to have
many very short CPU bursts

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for 1/O

load store
add store
read from file

wait for I/O

~ CPU burst

~ 1/O burst

} CPU burst
<
J‘ I/O burst

= CPU burst

= /0 burst

Histogram of CPU-burst Times

» The distribution can help in selecting an appropriate
CPU scheduling algorithms

A

160 |
140 |
120 |
100 |
80 |

|

40 |

frequency

20 |-

| | | | | >
»

0 8 16 24 32 40
burst duration (milliseconds)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

CPU Scheduler

» Short-term scheduler selects a process among the

processes in the ready queue, and allocates the CPU to
the selected process

o Queue may be ordered In various ways

» CPU scheduling decisions may take place when a
process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready

4. Terminates

» Scheduling under 1 and 4 is nonpreemptive
» All other scheduling iIs preemptive

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informatic

Dispatcher

» Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler
o switching context
o switching to user mode

o jumping to the proper location in the user program to resume
that process

» Dispatch latency — the time it takes for the dispatcher to
stop one process and start another running

Y - Ry

e R

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

8

Scheduling Criteria

» Why?
o Different scheduling algorithms may favor one class of
processes over another
» Criteria
o CPU Utilization
o Throughput
o Turnaround Time: (Completion Time) — (Start Time)
o Waiting Time: Waiting in the Ready Queue
o Response Time: First Response Time

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Scheduling Algorithms

» First-Come, First-Served Scheduling (FIFO)
» Shortest-Job-First Scheduling (SJF)

» Priority Scheduling

Round-Robin Scheduling (RR)

» Multilevel Queue Scheduling

» Multilevel Feedback Queue Scheduling

» Multiple-Processor Scheduling

v

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

First-Come, First-Served (FCFS)
Scheduling

» The process which requests the CPU first is allocated
the CPU

» Properties:
> Non-preemptive scheduling
o CPU might be hold for an extended period

CPU — —
request

A FIFO ready queue Dispatched
process

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

A Scheduling Example of FCFS (1/2)

Process Burst Time
P, 24
P, 3
P, 3

» Suppose that the processes arrive in the order: P, , P, , P,

P, P, P

0 24 27 30

» Waiting time for P, =0; P, =24, P;=27
» Average waiting time: (0 + 24 + 27)/3 =17

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

A Scheduling Example of FCFS (2/2)

Suppose that the processes arrive in the order:
> P2,P3,P1

The Gantt chart for the schedule is:

v

v

P, P Py

v

Waiting time for P, =6;P,=0.P,=3
Average waiting time: (6 +0+ 3)/3 =3
Convoy effect — short processes behind long a process

v Vv

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

Shortest-Job-First (SJF) Scheduling

Process Burst Time
P, 6
P, 8
P, 7
P, 3

» SJF scheduling chart

P, P, P3 P,

0 3 9 16 24

» Average waitingtime=(3+16+9+0)/4=7

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engineeri

S
,; !!!'i

SJF Scheduling Analysis

» Non-preemptive SJF scheduling is optimal when
processes are all ready at time 0
o The minimum average waiting time

» It is difficult to know the length of the next CPU
request

> Prediction of the next CPU burst time using exponential
averaging
1. t, =actual length of n" CPU burst
2. 7,.1 = predicted value for the next CPU burst
3. a,0<a<l
4. Define: 7, =at, +(1—a)2'n

© All Rights Reserved, Prof. Che-Wei Chang,

=R @iz s 15

Department of Computer Science and Information

Preemptive SJF Scheduling

» Preemptive or Non-preemptive?
o Criteria such as AWT (Average Waiting Time)

!

Non-preemptive
0 10 AWT = (0+(10-1))/2
T =9/2=45
1 10 11
or T
0 11 Preemptive AWT
1 = (2-1)+0) = 0.5

Shortest-Remaining-Time-First Scheduling

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engine

iz 1

Priority Scheduling

» A priority number (integer) is associated with each

process
» The CPU Is allocated to the process with the highest

priority
» Priority Assignment

o Internally defined — use some measurable quantity, such as the

number of open files, Average CPU Burst
Average 1/O Burst

o Externally defined — set by criteria external to the OS, such as
the criticality levels of jobs

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

A Scheduling Example with Priority
Scheduling

Process CPU Burst Time Priority
P1 10 3
P2 1 1
P3 2 3
P4 1 4
P5 5 2
Gantt Graph
P2 I:)5 Pl P3 I:)4
0 1 6 16 18 19

Average waiting time = (6+0+16+18+1)/5 = 8.2

© All Rights Reserved, Prof. Che-Wei Chang,

—
sy
I

=S

Department of Computer Science and Information Engineer

o

Issues of Priority Scheduling

» Problem: Starvation — low priority processes may never
execute

» Solution: Aging — as time progresses increase the
priority of the process

» A Special Case: SJF is priority scheduling where
priority Is the inverse of predicted next CPU burst time

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Round Robin (RR) Scheduling

» Each process gets a small unit of CPU time (time
guantum)

» After this time has elapsed, the process Is preempted
and added to the end of the ready queue

» If there are n processes in the ready queue and the

time quantum is g

o Each process gets 1/n of the CPU time in chunks of at most g
time units at once

> No process waits more than (n-1)g time units

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

A Scheduling Example of RR
Scheduling

Process CPU Burst Time

P1 24
P2 3 Time slice =4
P3 3
Pl I:)2 PS Pl Pl Pl Pl Pl
0 4 7 10 14 18 22 26 30

AWT = ((10-4) + (4-0) + (7-0))/3 = 17/3 = 5.66

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineeri

Time Quantum and Context Switch

process time = 10

10
6 10
i1 2 3 4 5 6 7 8 9 10

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chz

quantum

12

context
switches

0

Issues of RR Scheduling

» Time quantum too large = FIFO

» Time quantum too small - Time quantum must be
large with respect to context switch time, otherwise
overhead Is too high
o Time quantum usually 10 ms to 100ms
o Context switch < 10 us

» Arule of thumb is that 80 percent of the CPU bursts
should be shorter than the time quantum

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Issues of RR Scheduling —
Turnaround Time

process (10ms) quantum =10 quantum =1
P1 1, 10 ANAERIANE
; 0 10 20 30
P2 1020 1 T
2030 0 10 20 30

Average Turnaround Time

= (10+20+30)/3 = 20 ATT = (28+29+30)/3 = 29

=> 80% CPU Burst < time slice

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineer

Multilevel Queue Scheduling

» Partition the ready queue into several separate queues

=>» Processes can be classified into different groups and
permanently assigned to one queue

= interactive processes —>
— interactive editing processes E—
— batch processes E— 4

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Cha

Multilevel Queue Scheduling

» Intra-queue scheduling

o Independent choice of scheduling algorithms
* e.g., foreground — RR, and background — FCFS

» Inter-queue scheduling

o Fixed-priority preemptive scheduling

- e.g., foreground queues always have absolute priority over the
background queues

o Time slice between queues

- e.g., 80% CPU is given to foreground processes, and 20% CPU to
background processes

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Multilevel Feedback Queue
Scheduling

» A process can move between the various queues
o Aging can be implemented this way

» Multilevel-feedback-gqueue scheduler defined by the
following parameters:
o number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process

The method to determine which queue a newly ready process
will enter

o

o}

o

o}

© All Rights Reserved, Prof. Che-Wei Chang, = Bl £ 8y 57

Department of Computer Science and Information

An Example of Multilevel Feedback
Queue

» Three queues:
> Qu— RR with time quantum 8 milliseconds

> Q; — RR time quantum 16 milliseconds .
I E——
° Q,—FCFS — quantum = 8
» Scheduling
> Do jobs in Q, first and then Q, and then Q,
: . 2]
> Anew job enters queue Q, S N
- When it gains CPU, job receives 8
milliseconds
If it does not finish in 8 milliseconds, job is
moved to queue Q, I CCES EEE—
o At Q, each job receives 16 additional
milliseconds

If it still does not complete, it is preempted
and moved to queue Q,

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Thread Scheduling

» To run on a CPU, user threads must be mapped to an
associated kernel thread

» Local Scheduling

o Contention Scope: Process-Contention Scope (PCS)

o How the threads library decides which thread to put onto an
available kernel thread

» Global Scheduling

o Contention Scope: System-Contention Scope (SCS)

o How the kernel decides which kernel thread to run on CPU
next

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Multiple-Processor Scheduling

» CPU scheduling in a system with multiple CPUs

» A Homogeneous System
o Processors are identical in terms of their functionality

» A Heterogeneous System

> Programs must be compiled for instructions on proper
pProcessors

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Homogeneous Processors

» Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

» Symmetric multiprocessing (SMP) — each processor
IS self-scheduling, all processes in common ready
queue, or each processor has its own private queue of
ready processes

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Multiple-Processor Scheduling—
Processor Affinity

» A process might prefer to run on specific processors
o Hard affinity: sched setaffinity ()
o Soft affinity: non-uniform memory access

CPU CPU

S/

\ 3
\fast access % lfast access
Ss

memory memory

computer

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Multiple-Processor Scheduling—
Load Balancing

» Attempt to keep the workload evenly distributed across
all processors in an SMP system

» Push migration

o A specific task periodically checks the load on each processor
and evenly distributes the load by moving processes from
overloaded to idle or less-busy processors

» Pull migration
> An idle processor pulls a waiting task from a busy processor

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Multicore Processors

» Multicore Processor: A physical chip with multiple
processor cores.

» Scheduling Issues:

o Memory Stall

- Coarse-Grained Multithreading
- Thread execution until a long latency

- Fine-Grained Multithreading
- Better architecture design for switching

-> Multiple Hardware Threads

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Multithreaded Multicore (Hyper-
Threading) System

C compute cycle M memory stall cycle
i C M C M C M C M
o
time
eac -l C M C M C M C
threaco , [M C M C M C
o
time

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Real-Time Scheduling (1/2)

» Each task (process) has to be completed before its
deadline

» Soft real-time systems — try to serve a real-time task
by its deadline

» Hard real-time systems — a real-time task must be
served by its deadline

» Two types of latencies affect performance

1.Interrupt latency — time from arrival of interrupt to start of
routine that serves the interrupt

2.Dispatch latency — time for schedule to take current process off
CPU and switch to another

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Real-Time Scheduling (2/2)

event response to event

- response interval =

process made
interrupt available
processing
—

««— dispatch latency ———»

real-time
process

execution
«— »

<«—— conflicts —»1&—— dispatch —»

time

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Cha

Operating System Examples -
Linux in Version 2.6.23 + (1/3)

» Completely Fair Scheduler (CFS)

o CFS scheduler maintains per task virtual run time in variable
vruntime

o Assoclated with decay factor based on priority of task:
- lower priority =» higher decay rate

o Normal default priority yields virtual run time = actual run
time

o To decide next task to run, scheduler picks task with lowest
virtual run time

» Nice Value
o From -20 to +19
o Lower value is higher priority

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Operating System Examples -
Linux in Version 2.6.23 + (2/3)

» A red-back tree Is used to maintain the virtual run times
of tasks

Task with the smallest
value of vruntime

smaller , larger
Value of vruntime 9

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Operating System Examples -
Linux in Version 2.6.23 + (3/3)

» Real-time scheduling according to POSIX
o Real-time tasks have static priorities

» Real-time plus normal map into global priority scheme
» Nice value of -20 maps to global priority 100
» Nice value of +19 maps to priority 139

Real-Time Normal
0 99 100 139

Higher Lower
Priority

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Operating System Examples -
Windows Scheduling (1/3)

| ATypical Class

Real- High Above | Normal | Below | Idle
time normal normal | priority
Time- | 37 15 15 15 15 15
critical
Highest | 26 15 12 10 8 6
Above | 25 14 11 9 I 5
normal
Base ____ .Inomal |24 |13 |10 |8 6 |4
Priority
Below | 23 12 9 7 5 3
normal
Lowest | 22 |11 6 4 2
ldle 16 1 1 1 1 1
Real-Time Class

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Operating System Examples -
Windows Scheduling (2/3)

» Priority-Based Preemptive Scheduling
> Priority Range: from 0 to 31
- Variable class uses 1-15
- Real-time class uses 16-31
o Dispatcher: A process runs until
- It 1s preempted by a higher-priority process
- |t terminates
- Its time quantum ends
- It calls a blocking system call

o |dle thread
» A Queue per Priority Level

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Operating System Examples -
Windows Scheduling (3/3)

» Each thread has a base priority that represents a value
In the priority range of its class
» Priority Changing
o Increased after some waiting
- Different amount for different 1/0 devices
o Decreased after some computation
- The priority is never lowered below the base priority
» Favor foreground processes

o Each foreground task is given more time quantum (typically 3
times longer)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

=B itsy s

Scheduling Algorithm Evaluation

» A General Procedure

o Select criteria that may include several measures, e.g.,
maximize CPU utilization while confining the maximum
response time to 1 second

o Evaluate various algorithms
» Evaluation Methods:

o Deterministic modeling

o Queuing models

o Simulation

o Implementation

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Deterministic Modeling

» A Typical Type of Analytic Evaluation
o Take a particular predetermined workload and defines the
performance of each algorithm for that workload
» Properties
o Simple and fast

o Through excessive executions of a number of examples, trends
might be identified

o But It needs exact numbers for inputs, and its answers only
apply to those cases

- Being too specific and requires too exact knowledge to be useful

© All Rights Reserved, Prof. Che-Wei Chang, = Bl £ 8y 4

Department of Computer Science and Information

Deterministic Modeling

FCFS
P1 P2 P3 P4 P5
0 10 39 42 49 6l
Average Waiting Time (AWT)=(0+10+39+42+49)/5=28
process CPU Burst time Nonpreemptive Shortest Job First
Pl 10 P3P4| PL | P5 p2
P2 29
P3 3 03 10 20 32 6l
P4 I AWT=(10+32+0+3+20)/5=13
P5 12

Round Robin (qu_antum =10)
PL | P2 P3P4| P5 | P2 P5 P2

0 10 2023 30 40 5052 61
AWT=(0+(10+20+2)+20+23+(30+10))/5=23

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Queuing Models

» Motivation:
o Workloads vary, and there is no static set of processes

» Models (~ Queuing-Network Analysis)

> Workload:
Arrival rate: the distribution of times when processes arrive
The distributions of CPU & 1/O bursts

o Service rate

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Simulation (1/2)

» Motivation:
o (Get a more accurate evaluation

» Procedures:

o Program a model of the computer system
> Drive the simulation with various data sets

- Randomly generated according to some probability distributions

=» Inaccuracy occurs because of only the occurrence frequency of
events. Miss the order & the relationships of events.

- Trace tapes: monitor the real system & record the sequence of
actual events.

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

f?fﬁ%ﬁ 48

Simulation (2/2)

_ _ performance
simulation =) statistics

for FCFS
| FCFS |

CPU 10
/O 213
actual CPU 12 performance

process —=|I/0 112 simulation —» statistics

execution CPU 2] for SJF
/O 147 SJF

CPU 173

l

trace tape

performance
simulation —» statistics
for RR (g = 14)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Cha

siliiin o

Implementation

» Motivation:
o (Get more accurate results than a simulation

» Procedure:
o Code scheduling algorithms
o Put them in the OS
o Evaluate the real behaviors
» Difficulties:

o Cost in coding algorithms and modifying the OS
o Reaction of users to a constantly changing the OS
> The environment in which algorithms are used will change

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

