
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling
6. Synchronization
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems
12. Secondary-Storage Systems

 To introduce CPU scheduling, which is the basis for

multi-programmed operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU

scheduling algorithm for a particular system

 To examine the scheduling algorithms of several

operating systems

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 CPU–I/O Burst Cycle

◦ Process execution consists of a

cycle of CPU execution and I/O

waiting

 Process Execution

◦ CPU-bound programs tend to

have a few very long CPU bursts

◦ IO-bound programs tend to have

many very short CPU bursts

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The distribution can help in selecting an appropriate

CPU scheduling algorithms

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Short-term scheduler selects a process among the
processes in the ready queue, and allocates the CPU to
the selected process
◦ Queue may be ordered in various ways

 CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Dispatcher module gives control of the CPU to the

process selected by the short-term scheduler

◦ switching context

◦ switching to user mode

◦ jumping to the proper location in the user program to resume

that process

 Dispatch latency – the time it takes for the dispatcher to

stop one process and start another running

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Why?

◦ Different scheduling algorithms may favor one class of

processes over another

 Criteria

◦ CPU Utilization

◦ Throughput

◦ Turnaround Time: (Completion Time) – (Start Time)

◦ Waiting Time: Waiting in the Ready Queue

◦ Response Time: First Response Time

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 First-Come, First-Served Scheduling (FIFO)

 Shortest-Job-First Scheduling (SJF)

 Priority Scheduling

 Round-Robin Scheduling (RR)

 Multilevel Queue Scheduling

 Multilevel Feedback Queue Scheduling

 Multiple-Processor Scheduling

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The process which requests the CPU first is allocated

the CPU

 Properties:

◦ Non-preemptive scheduling

◦ CPU might be hold for an extended period

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

CPU

request
A FIFO ready queue Dispatched

process

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

P1 P2 P3

24 27 300

 Suppose that the processes arrive in the order:

◦ P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Convoy effect – short processes behind long a process

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

P1P3P2

63 300

Processrriva Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

P4
P3P1

3 160 9

P2

24

 Non-preemptive SJF scheduling is optimal when
processes are all ready at time 0
◦ The minimum average waiting time

 It is difficult to know the length of the next CPU
request
◦ Prediction of the next CPU burst time using exponential

averaging

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

=

=

+

 1n

th
n nt

() nnn t −+== 1 1

 Preemptive or Non-preemptive?

◦ Criteria such as AWT (Average Waiting Time)

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

0 10

1 10 11

Non-preemptive

AWT = (0+(10-1))/2

= 9/2 = 4.5

or

0

1 2

11 Preemptive AWT

= ((2-1)+0) = 0.5

Shortest-Remaining-Time-First Scheduling

 A priority number (integer) is associated with each

process

 The CPU is allocated to the process with the highest

priority

 Priority Assignment

◦ Internally defined – use some measurable quantity, such as the

number of open files,

◦ Externally defined – set by criteria external to the OS, such as

the criticality levels of jobs

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Average CPU Burst
Average I/O Burst

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Process

P1

P2

P3

P4

P5

CPU Burst Time

10

1

2

1

5

Priority

3

1

3

4

2

Gantt Graph

Average waiting time = (6+0+16+18+1)/5 = 8.2

P2 P3P5

1 180 16

P4

196

P1

 Problem: Starvation – low priority processes may never

execute

 Solution: Aging – as time progresses increase the

priority of the process

 A Special Case: SJF is priority scheduling where

priority is the inverse of predicted next CPU burst time

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Each process gets a small unit of CPU time (time

quantum)

 After this time has elapsed, the process is preempted

and added to the end of the ready queue

 If there are n processes in the ready queue and the

time quantum is q
◦ Each process gets 1/n of the CPU time in chunks of at most q

time units at once

◦ No process waits more than (n-1)q time units

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Process

P1

P2

P3

CPU Burst Time

24

3

3

Time slice = 4

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

AWT = ((10-4) + (4-0) + (7-0))/3 = 17/3 = 5.66

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Time quantum too large → FIFO

 Time quantum too small → Time quantum must be

large with respect to context switch time, otherwise

overhead is too high

◦ Time quantum usually 10 ms to 100ms

◦ Context switch < 10 μs

 A rule of thumb is that 80 percent of the CPU bursts

should be shorter than the time quantum

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

process (10ms)

P1

P2

P3
20 30

10 20

0 10

quantum = 10 quantum = 1

Average Turnaround Time

= (10+20+30)/3 = 20
ATT = (28+29+30)/3 = 29

=> 80% CPU Burst < time slice

0 10 20 30

0 10 20 30

0 10 20 30

 Partition the ready queue into several separate queues

➔ Processes can be classified into different groups and

permanently assigned to one queue

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Intra-queue scheduling

◦ Independent choice of scheduling algorithms

 e. g., foreground – RR, and background – FCFS

 Inter-queue scheduling

◦ Fixed-priority preemptive scheduling

 e.g., foreground queues always have absolute priority over the

background queues

◦ Time slice between queues

 e.g., 80% CPU is given to foreground processes, and 20% CPU to

background processes

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A process can move between the various queues

◦ Aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by the

following parameters:

◦ number of queues

◦ scheduling algorithms for each queue

◦ method used to determine when to upgrade a process

◦ method used to determine when to demote a process

◦ The method to determine which queue a newly ready process

will enter

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Three queues:

◦ Q0 – RR with time quantum 8 milliseconds

◦ Q1 – RR time quantum 16 milliseconds

◦ Q2 – FCFS

 Scheduling

◦ Do jobs in Q0 first and then Q1 and then Q2

◦ A new job enters queue Q0

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8 milliseconds, job is

moved to queue Q1

◦ At Q1 each job receives 16 additional

milliseconds

 If it still does not complete, it is preempted

and moved to queue Q2

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 To run on a CPU, user threads must be mapped to an

associated kernel thread

 Local Scheduling

◦ Contention Scope: Process-Contention Scope (PCS)

◦ How the threads library decides which thread to put onto an

available kernel thread

 Global Scheduling

◦ Contention Scope: System-Contention Scope (SCS)

◦ How the kernel decides which kernel thread to run on CPU

next

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 CPU scheduling in a system with multiple CPUs

 A Homogeneous System

◦ Processors are identical in terms of their functionality

 A Heterogeneous System

◦ Programs must be compiled for instructions on proper

processors

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Asymmetric multiprocessing – only one processor

accesses the system data structures, alleviating the need

for data sharing

 Symmetric multiprocessing (SMP) – each processor

is self-scheduling, all processes in common ready

queue, or each processor has its own private queue of

ready processes

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A process might prefer to run on specific processors
◦ Hard affinity: sched_setaffinity()

◦ Soft affinity: non-uniform memory access

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Attempt to keep the workload evenly distributed across

all processors in an SMP system

 Push migration

◦ A specific task periodically checks the load on each processor

and evenly distributes the load by moving processes from

overloaded to idle or less-busy processors

 Pull migration

◦ An idle processor pulls a waiting task from a busy processor

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Multicore Processor: A physical chip with multiple

processor cores.

 Scheduling Issues:

◦ Memory Stall

 Coarse-Grained Multithreading

 Thread execution until a long latency

 Fine-Grained Multithreading

 Better architecture design for switching

→Multiple Hardware Threads

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

35
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Each task (process) has to be completed before its

deadline

 Soft real-time systems – try to serve a real-time task

by its deadline

 Hard real-time systems – a real-time task must be

served by its deadline

 Two types of latencies affect performance

1.Interrupt latency – time from arrival of interrupt to start of

routine that serves the interrupt

2.Dispatch latency – time for schedule to take current process off

CPU and switch to another

36
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

37
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Completely Fair Scheduler (CFS)
◦ CFS scheduler maintains per task virtual run time in variable
vruntime

◦ Associated with decay factor based on priority of task:

 lower priority ➔ higher decay rate

◦ Normal default priority yields virtual run time = actual run
time

◦ To decide next task to run, scheduler picks task with lowest
virtual run time

 Nice Value
◦ From -20 to +19

◦ Lower value is higher priority

38
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A red-back tree is used to maintain the virtual run times

of tasks

39
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Real-time scheduling according to POSIX

◦ Real-time tasks have static priorities

 Real-time plus normal map into global priority scheme

 Nice value of -20 maps to global priority 100

 Nice value of +19 maps to priority 139

40
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

41
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Real-

time

High Above

normal

Normal Below

normal

Idle

priority

Time-

critical
31 15 15 15 15 15

Highest 26 15 12 10 8 6

Above

normal
25 14 11 9 7 5

Normal 24 13 10 8 6 4

Below

normal
23 12 9 7 5 3

Lowest 22 11 8 6 4 2

Idle 16 1 1 1 1 1

Variable Class (1..15)
Real-Time Class

Base

Priority

A Typical Class

 Priority-Based Preemptive Scheduling

◦ Priority Range: from 0 to 31

 Variable class uses 1-15

 Real-time class uses 16-31

◦ Dispatcher: A process runs until

 It is preempted by a higher-priority process

 It terminates

 Its time quantum ends

 It calls a blocking system call

◦ Idle thread

 A Queue per Priority Level

42
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Each thread has a base priority that represents a value
in the priority range of its class

 Priority Changing
◦ Increased after some waiting

 Different amount for different I/O devices

◦ Decreased after some computation

 The priority is never lowered below the base priority

 Favor foreground processes
◦ Each foreground task is given more time quantum (typically 3

times longer)

43
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A General Procedure
◦ Select criteria that may include several measures, e.g.,

maximize CPU utilization while confining the maximum
response time to 1 second

◦ Evaluate various algorithms

 Evaluation Methods:
◦ Deterministic modeling

◦ Queuing models

◦ Simulation

◦ Implementation

44
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A Typical Type of Analytic Evaluation
◦ Take a particular predetermined workload and defines the

performance of each algorithm for that workload

 Properties
◦ Simple and fast

◦ Through excessive executions of a number of examples, trends
might be identified

◦ But it needs exact numbers for inputs, and its answers only
apply to those cases

 Being too specific and requires too exact knowledge to be useful

45
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

46
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

process

P1

P2

P3

P4

P5

CPU Burst time

10

29

3

7

12

P3 P5 P2

0 10 20 613

P4 P1

32

Nonpreemptive Shortest Job First

P1 P2

0 10 20 40 50 61

P2

23

P4 P5

30

P2 P5

52

Round Robin (quantum =10)

P1

0 10 39 42 49 61

FCFS

Average Waiting Time (AWT)=(0+10+39+42+49)/5=28

AWT=(10+32+0+3+20)/5=13

AWT=(0+(10+20+2)+20+23+(30+10))/5=23

P2 P3 P4 P5

P3

 Motivation:

◦ Workloads vary, and there is no static set of processes

 Models (~ Queuing-Network Analysis)

◦ Workload:

 Arrival rate: the distribution of times when processes arrive

 The distributions of CPU & I/O bursts

◦ Service rate

47
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Motivation:

◦ Get a more accurate evaluation

 Procedures:

◦ Program a model of the computer system

◦ Drive the simulation with various data sets

 Randomly generated according to some probability distributions

➔ Inaccuracy occurs because of only the occurrence frequency of

events. Miss the order & the relationships of events.

 Trace tapes: monitor the real system & record the sequence of

actual events.

48
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

49
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Motivation:

◦ Get more accurate results than a simulation

 Procedure:

◦ Code scheduling algorithms

◦ Put them in the OS

◦ Evaluate the real behaviors

 Difficulties:
◦ Cost in coding algorithms and modifying the OS

◦ Reaction of users to a constantly changing the OS

◦ The environment in which algorithms are used will change

50
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

