
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling
6. Synchronization
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems
12. Secondary-Storage Systems

 To introduce the critical-section problem, whose

solutions can be used to ensure the consistency of

shared data

 To present both software and hardware solutions of the

critical-section problem

 To examine several classical process-synchronization

problems

 To explore several tools that are used to solve process

synchronization problems

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Producer

while (1) {

while (counter == BUFFER_SIZE)

;

produce an item in nextp;

buffer[in] = nextp;

in = (in+1) % BUFFER_SIZE;

counter++;

}

 Consumer:

while (1) {

while (counter == 0)

;

nextc = buffer[out];

out = (out +1) % BUFFER_SIZE;

counter--;

consume an item in nextc;

}

 One counter++ and one counter--
r1 = counter r2 = counter

r1 = r1 + 1 r2 = r2 - 1

counter = r1 counter = r2

 Initially, let counter = 5
1. P: r1 = counter

2. P: r1 = r1 + 1

3. C: r2 = counter

4. C: r2 = r2 – 1

5. P: counter = r1

6. C: counter = r2 = 4

 The result can be 4, 5 or 6

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

A Race Condition!

 A Race Condition:
◦ A situation where the outcome of the execution depends on the

particular order of process scheduling

 The Critical-Section Problem:
◦ Design a protocol that processes can use to cooperate

 Each process has a segment of code, called a critical section, whose
execution must be mutually exclusive

 A general structure for the critical-section design

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

permission request

exit notification

entry section;

critical section;

exit section;

remainder section;

} while (1);

do {

 Three Requirements

◦ Mutual Exclusion:

Only one process can be in its critical section

◦ Progress:

If no process is executing in its critical section and there

exist some processes that wish to enter their critical

section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely

◦ Bounded Waiting:

A waiting process only waits for a bounded number of

processes to enter its critical section

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Notation

◦ Processes Pi and Pj

 Assumption

◦ Every basic machine-language

instruction is atomic

 Algorithm 1

◦ Idea: Remember which process is

allowed to enter its critical

section. That is, Pi can enter its

critical section if turn = i

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

while (turn != i) ;

critical section

turn=j;

remainder section

} while (1);

do {

 Algorithm 1 fails the progress requirement:

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Pi

Pj

Time

Time

Pi quits!

turn=i

exit

turn=j

exit

blocked on Pj’s

entry section

turn=i

 Algorithm 2
◦ Idea: Remember the state

of each process

◦ flag[i]==true Pi is ready
to enter its critical section

◦ Algorithm 2 fails the
progress requirement when
flag[i] == flag[j] == true

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

flag[i]=true;

while (flag[j]) ;

critical section

flag[i]=false;

remainder section

} while (1);

do {

Initially, flag[i]=flag[j]=false

 Algorithm 3

◦ Idea: Combine the ideas of

Algorithms 1 and 2

◦ When (flag[i] && turn=i), Pj

must wait

◦ Initially, flag[i]=flag[j]=false,

and turn = i or j

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

flag[i]=true;

turn=j;

while (flag[j] && turn==j) ;

critical section

flag[i]=false;

remainder section

} while (1);

do {

 Properties of Algorithm 3
◦ Mutual Exclusion

 The eventual value of turn determines which process enters the
critical section

◦ Progress

 A process can only be stuck in the while loop, and the process
which can keep it waiting must be in its critical sections

◦ Bounded Waiting

 Each process wait at most one entry by the other process

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

flag[j]=true;

turn=i;

while (flag[i] && turn==i) ;

critical section

flag[j]=false;

remainder section

} while (1);

do {

Process Pj的程式碼:

flag[i]=true;

turn=j;

while (flag[j] && turn==j) ;

critical section

flag[i]=false;

remainder section

} while (1);

do {

Process Pi的程式碼:

 Could we move turn=i; and turn=j; as follows:

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

flag[i]=true;

while (flag[j] && turn==j) ;

critical section

turn=j;

flag[i]=false;

remainder section

} while (1);

do {

Process Pi:

flag[j]=true;

while (flag[i] && turn==i) ;

critical section

turn=i;

flag[j]=false;

remainder section

} while (1);

do {

Process Pj:

 不行的原因如下，如果照以下方式執行，Mutual
Exclusion的條件會被違反：
◦ 不失一般性，我們假設turn的初始值是i

◦ Pj第一次開始執行時Pi尚未被執行過
 由於此時Pi還沒執行所以flag[i]應為false

 所以Pj可以順利進入critical section

◦ 在Pj進入critical section的這段期間內Pi也接著開始執行
 由於turn的初始值是i

 所以Pi也可以順利進入critical section

◦ 這時候Pj和Pi同時在critical section裡違反Mutual
Exclusion

◦ 可是Peterson’s Solution提出的做法(第一頁)不會有這個問題，
大家可以自己想想

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Motivation:

◦ Hardware features make programming easier and improve

system efficiency

 Approach:

◦ Disable Interrupt No Preemption

 Infeasible in multiprocessor environments

 Potential impacts on interrupt-driven system clocks

◦ Atomic Hardware Instructions

 Test-and-set, Swap, etc.

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

boolean TestAndSet(boolean *target) {

boolean rv = *target;

*target=true;

return rv;

}

while (TestAndSet(&lock)) ;

critical section

lock=false;

remainder section

} while (1);

do {

Meaning

Usage

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Meaning

Usage

void Swap(boolean *a, boolean *b) {

boolean temp = *a;

*a=*b;

*b=temp; }

key=true;

while (key == true)

Swap(&lock, &key);

critical section

lock=false;

remainder section

} while (1);

do {

 Problem

◦ n tasks want to access some share

data

 Mutual Exclusion

◦ Pass if key== F or waiting[i]== F

 Progress

◦ Exit process sends a process in

 Bounded Waiting

◦ Wait at most n-1 times

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

waiting[i]=true;

key=true;

while (waiting[i] && key)

key=TestAndSet(&lock);

waiting[i]=false;

critical section

j= (i+1) % n;

while((j != i) && (!waiting[j]))

j= (j+1) % n;

If (j=i) lock=false;

else waiting[j]=false;

remainder section

} while (1);

do {

 Previous solutions are complicated and generally inaccessible
to application programmers

 OS designers build software tools to solve critical section
problem

 Product critical regions with it by first acquire() a lock
then release() it
◦ Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic
◦ Usually implemented via hardware atomic instructions

 But this solution requires busy waiting
◦ This lock therefore called a spinlock

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Meaning

Usage

acquire() {

while (!available)

; /* busy wait */

available = false;

}

release() {

available = true;

}

do {

acquire(lock);

critical section

release(lock);

remainder section

} while (true);

 Motivation:

◦ A high-level solution for more complex problems

 Semaphore

◦ A variable S only accessible by two atomic operations:

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

wait(S) { /* P */

while (S <= 0) ;

S--;

}

signal(S) { /* V */

S++;

}

 Critical Sections

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Precedence Enforcement

do {

wait(S);

critical section

signal(S);

remainder section

} while (1);

P1:

S1;

signal(S);

P2:

wait(S);

S2;

 Implementation

◦ Spinlock: A Busy-Waiting Semaphore

 “while (S <= 0)” causes the wasting of CPU cycles!

 Advantage:

 When locks are held for a short time, spinlocks are useful since no

context switching is involved.

◦ Semaphores with Blocked-Waiting

 No busy waiting from the entry to the critical section!

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

typedef struct{

int value;

struct process *list;

} semaphore;

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

 Deadlock
◦ A set of processes is in a deadlock state when every process in the

set is waiting for an event that can be caused only by another

process in the set

 Starvation (or Indefinite Blocking)
◦ e.g., a LIFO (last-in, first-out) queue

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

P0: wait(S); P1: wait(Q);

wait(Q); wait(S);

… …

signal(S); signal(Q);

signal(Q); signal(S);

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Producer:

do {

produce an item in nextp;

…….

wait(empty); /* control buffer availability */

wait(mutex); /* mutual exclusion */

……

add nextp to buffer;

signal(mutex);

signal(full); /* increase item counts */

} while (1);

empty is

initialized to n

mutex is

initialized to 1

full is

initialized to 0

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Consumer:

do {

wait(full); /* control buffer availability */

wait(mutex); /* mutual exclusion */

…….

remove an item from buffer to nextp;

……

signal(mutex);

signal(empty); /* increase item counts */

consume nextp;

} while (1);

 A data set is shared among a number of concurrent

processes

◦ Readers only read the data set; they do not perform any

updates

◦ Writers can both read and write

 Problem

◦ Allow multiple readers to read at the same time

◦ Only one single writer can access the shared data at the same

time

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

semaphore wrt, mutex;

(initialized to 1);

int readcount=0;

Writer:

wait(wrt);

……

writing is performed

……

signal(wrt)

Reader:

wait(mutex);

readcount++;

if (readcount == 1)

wait(wrt);

signal(mutex);

… reading…

wait(mutex);

readcount--;

if (readcount== 0)

signal(wrt);

signal(mutex);

 Each philosopher must pick up one chopstick beside

him/her at a time

 When two chopsticks are picked up, the philosopher

can eat

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

thinking hungry

deadeating

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

semaphore chopstick[5];

do {

wait(chopstick[i]);

wait(chopstick[(i + 1) % 5]);

… eat …

signal(chopstick[i]);

signal(chopstick[(i+1) % 5]);

…think …

} while (1);

 This algorithm could create a deadlock

 Several possible remedies to the deadlock problem:

◦ Allow at most four philosopher

◦ Allow a philosopher to pick up chopsticks only if both are

available

◦ Asymmetric solution

35
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Incorrect use of semaphore operations:

◦ signal (mutex) …. wait (mutex)

◦ wait (mutex) … wait (mutex)

◦ Omitting of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation

A high-level abstraction that provides a convenient and

effective mechanism for process synchronization

36
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Components
◦ Variables

 Monitor states

◦ Procedures

 Only access local variables or
formal parameters

37
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}

 Condition Variables

◦ x.wait () – a process that invokes the operation is suspended

until x.signal ()

◦ x.signal () – resumes one of processes (if any) that invoked

x.wait ()

 If no x.wait () on the variable, then it has no effect on the variable

38
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

39
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

monitor DiningPhilosophers

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait();

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

 Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup (i);

Eat

DiningPhilosophers.putdown (i);

 No deadlock, but starvation is possible

40
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Semaphores
◦ mutex – to protect the monitor

◦ next – being initialized to zero, on which processes may suspend
themselves

 next-count

 For each external function F

wait(mutex);

…

body of F;

…

if (next-count > 0)

signal(next);

else signal(mutex);

41
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

◦ For every condition x

 A semaphore x-sem

 An integer variable x-count

 Implementation of x.wait() and x.signal :

42
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 x.wait()

x-count++;

if (next-count > 0)

signal(next);

else

signal(mutex);

wait(x-sem);

x-count--;

 x.signal()

if (x-count > 0)

{

next-count++;

signal(x-sem);

wait(next);

next-count--;

}

* x.wait() and x.signal() are invoked within a monitor

 How do we determine which of the suspended

processes should be resumed next ?

◦ FCFS ordering

◦ Conditional-wait construct x.wait(c);

◦ Monitor-scheduling algorithm

 Built-in

or

 User define

43
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

