
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling
6. Synchronization
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems
12. Secondary-Storage Systems

 To develop a description of deadlocks, which prevent

sets of concurrent processes from completing their

tasks

 To present a number of different methods for

preventing or avoiding deadlocks in a computer system

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A set of process is in a deadlock state when every
process in the set is waiting for an event that can be
caused by only another process in the set

 System Model
◦ System consists of resources

◦ Resource types R1, R2, . . ., Rm

 e.g. CPU, memory space, I/O devices, …

 Each resource type Ri has Wi instances

◦ Each process utilizes a resource as follows:

 request

 use

 release

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Mutual exclusion: only one process at a time can use a
resource

 Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes

 No preemption: a resource can be released only
voluntarily by the process holding it

 Circular wait: there exists a set {P0, P1, …, Pn-1} of
waiting processes such that each Pi is waiting for a
resource that is held by P((i+1)%n)

➔Deadlock can arise if four conditions hold simultaneously

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A set of vertices V and a set of edges E

 V is partitioned into two types:

◦ P = {P1, P2, …, Pn}, the set consisting of all the processes in

the system

◦ R = {R1, R2, …, Rm}, the set consisting of all resource types in

the system

 E has two types:

◦ Request edge : directed edge Pi → Rj

◦ Assignment edge : directed edge Rj→ Pi

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Process

 Resource Type with 4 instances

 Pi requests an instance of Rj

 Pi is holding an instance of Rj

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Pi Rj

Pi Rj

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

P3 is holding an instance of R3

P2 is holding an instance of R1

and an instance of R2 and requests

an instance of R3

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Deadlock

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

The cycle will be broken

after P2 is finished

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Code:

void transaction(Account from, Account to, double amount)

{

mutex lock1, lock2;

lock1 = get lock(from);

lock2 = get lock(to);

acquire(lock1);

acquire(lock2);

withdraw(from, amount);

deposit(to, amount);

release(lock2);

release(lock1);

}

Use:

transaction(acc1, acc2, 1000);

transaction(acc2, acc1, 4000);

Hold Wait

 Make sure that the system never has a deadlock

◦ Deadlock Prevention: Prevent the necessary conditions

◦ Deadlock Avoidance: Make sure that the system always stays

at a “safe” state

 Do recovery if the system is deadlocked

◦ Deadlock Detection

◦ Recovery

 Ignore the possibility of deadlock occurrences

◦ Restart the system manually if the system seems to be

deadlocked or stops functioning

◦ Note that the system may be frozen temporarily

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Goal:

◦ Try to fail anyone of the necessary conditions

◦ The Necessary Conditions

◦ Mutual Exclusion

 Some resources, such as a printer, are intrinsically non-sharable

◦ Hold and Wait

◦ No Preemption

◦ Circular Wait

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Rules

◦ Acquire all needed resources before its execution

or

◦ Release allocated resources before request additional resources

 Disadvantage

◦ Low resource utilization

◦ Starvation

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Related protocols are only applied to resources whose states
can be saved and restored, e.g., CPU registers & memory
space, instead of printers or tape drives

 Example

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Resource

Request
Satisfied?

No

Yes

Requested

Resources are

held by “Waiting”

processes?

Preempt

those resources

Yes

No

“Wait” and its

allocated resources

may be preempted

Grant

 Rule

◦ Impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration

 Example

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

/* thread one runs in this function */

void *do work one(void *param)
{

lock(&first mutex);

lock(&second mutex);

/** * Do some work */

unlock(&second mutex);

unlock(&first mutex);

exit(0);

}

/* thread two runs in this function */

void *do work two(void *param)
{

lock(&second mutex);

lock(&first mutex);

/** * Do some work */

unlock(&first mutex);

unlock(&second mutex);

exit(0);

}

The order is

not allowed

 Goal:

◦ Dynamically examines the resource-allocation state to ensure

that there can never be a circular-wait condition

◦ i.e., keep the system at a safe state

◦ Require that the system has some additional information

◦ For each resource

 Count the allocated amount

 Log the available amount

◦ For each process

 Know the maximum demand of each resource

 Count the allocated amount of each resource

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 If a system is in safe state → no deadlocks

 If a system is in unsafe state → possibility of deadlock

 Avoidance → ensure that a system will never enter an

unsafe state

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 System is in a safe state if there exists a safe sequence

of all processes

 A sequence <P1, P2, …, Pn> is safe if for each Pi, the

resources that Pi can still request can be satisfied by

currently available resources plus the resources held by

all the Pj, with j < i

 That is:

◦ When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate

◦ When Pi terminates, Pi +1 can obtain its needed resources, and

so on

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Example: for only one type of resources

 The existence of a safe sequence <P1, P0, P2>

 If P2 got two more, the system state is unsafe

➔How to ensure that the system will always remain in a

safe state?

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Max needs Allocated Available

P0 10 5 3

P1 4 2

P2 9 2

 Claim edge Pi→ Rj indicated that process Pi may

request resource Rj; represented by a dashed line

 Claim edge converts to request edge when a process

requests a resource

 Request edge converted to an assignment edge when

the resource is allocated to the process

 When a resource is released by a process, assignment

edge reconverts to a claim edge

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

P2 request R2 If the request is granted:

Unsafe State

Block the request:

Safe State

 Available [m]

◦ If Available [i] = k, there are k instances of

resource type Ri available

 Max [n,m]

◦ If Max [i,j] = k, process Pi may request at most

k instances of resource type Rj

 Allocation [n,m]

◦ If Allocation [i,j] = k, process Pi is currently

allocated k instances of resource type Rj

 Need [n,m]

◦ If Need [i,j] = k, process Pi may need k more

instances of resource type Rj

➔Need [i,j] = Max [i,j] – Allocation [i,j]

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

n: number of

processes

m: number of

resource types

1. Let Work and Finish be vectors of length m and n, respectively

Initialize:
Work[i]Available[i] for i = 0, 1, …, m-1, which means the current available
instances of each resource

Finish[i] false for i = 0, 1, …, n- 1, which means if process Pi is finished

2. Find a process Pi such that both:

(a) Finish[i] == false

(b) Need[i] ≦Work

If no such i exists, go to step 4

3. Work Work + Allocation[i]
Finish[i] true
go to Step 2

4. If Finish [i] == true for all i, then the system is in a safe state; otherwise,
the system is unsafe

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

●X≦ Y if X[k] ≦ Y[k] for all k

●XX+Y means X[k]X[k] +Y[k] for all k

Request[i] is the request vector for process Pi. If Request[i,j] =
k then process Pi wants k instances of resource type Rj

1. If Request[i]≦ Need[i], then goto Step 2; otherwise, Trap
2. If Request[i]≦Available, then goto Step3; otherwise, Pi must

wait
3. Have the system pretend to have allocated resources to process

Pi by setting:
Available Available – Request[i];
Allocation[i] Allocation[i] + Request[i];
Need[i] Need[i] – Request[i];

4. Execute “Safe State Checking”. If the system state is safe,
the request is granted; otherwise, Pi must wait, and the old
resource allocation state is restored

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Allocation Max Need Available

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Yes, a safe sequence is <P1,P3,P4,P0,P2>

Is it in a safe state now?

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Allocation Max Need Available

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

1 5 3 2

2

7 4 3

3

7 4 5

4

7 5 5

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Allocation Max Need Available

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Let P1 make a request Request[1] = (1,0,2) Request[1] ≦Available (i.e., (1,0,2) ≦ (3,3,2))

Should we grant it? Yes, there is still a safe sequence <P1,P3,P4,P0,P2>

If Request[4] = (3,3,0) is asked later, it must be rejected

If Request[0] = (0,2,0) is asked later, it must be rejected because it results in an unsafe state

 Approach:

◦ Allow system to enter deadlock state

 Thus, we need:

◦ Detection algorithm

◦ Recovery scheme

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Maintain wait-for graph

◦ Nodes are processes

◦ Pi→ Pj if Pi is waiting for Pj

 Periodically invoke an algorithm that searches for a

cycle in the graph

◦ If there is a cycle, there exists a deadlock

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Resource-Allocation Graph Corresponding wait-for graph

 Data Structures

◦ Available[1..m]: number of available resource instances

◦ Allocation[1..n, 1..m]: current resource allocation to each

process

◦ Request[1..n, 1..m]: the current request of each process

◦ If Request[i,j] = k, Pi is now requesting k more instances of

resource type Rj

35
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

n: number of processes, m: number of resource types

1. Work[1..m] Available[1..m]

Finish[1..n] False

2. Find a process Pi such that both

a. Finish[i] = False

b. Request[i] ≦Work

If no such i, goto Step 4

3. Work Work + Allocation[i]

Finish[i] := True

goto Step 2

4. If Finish[i] = False for some Pi, then the system is in a deadlock state

If Finish[i] = False, then process Pi is deadlocked

36
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

37
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 2 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

 Find a sequence <P0, P2, P3, P1, P4> such that Finish[i]
= True for all i

 If Request[2] = (0,0,1) is issued, then P1, P2, P3, and
P4 are deadlocked

38
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1

0 3 0

2 3 3 3

3 5 4 4

4

7 4 4

 When, and how often, to invoke depends on:

◦ How often a deadlock is likely to occur?

◦ How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may

be many cycles in the resource graph and so we would

not be able to tell which of the deadlocked processes

“caused” the deadlock

39
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle is

eliminated

 In which order should we choose to abort?

1. Priority of the process

2. How long process has computed, and how much longer to

completion

3. Resources the process has used

4. Resources process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch?

40
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Selecting a victim – minimize cost

 Rollback – return to some safe state, restart process for

that state

 Starvation – same process may always be picked as

victim, include number of rollback in cost factor

41
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

