Operating System
Concepts

Che-Wel Chang
chewei@mail.cqu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Contents

Introduction

System Structures

Process Concept
Multithreaded Programming
Process Scheduling
Synchronization

Deadlocks
Memory-Management Strategies
Virtual-Memory Management
File System

Implementing File Systems
Secondary-Storage Systems

© 0 N o g B~ LD

el i
NS

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineerin

Chapter 8. Memory-
Management Strategies

Objectives

» To provide a detailed description of various ways of
organizing memory hardware

» To discuss various memory-management techniques,
Including paging and segmentation

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Background

» Program must be brought (from disk) into memory and
placed within a process for it to be run

» Main memory and registers are the storages which CPU
can access directly

» Register access Is In one CPU clock (or less)
» Main memory access can take cycles, causing a stall
» Cache sits between main memory and CPU registers

= LEpt 25 s

b N Sax

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Storage-Device

Hierarchy

ﬁ e Access time: a cycle

registers

AN .
| \% e Access time: several

Primary Storage

cache CyCleS

v

* volatile storage

A T
. e Access time: many

main memory

Secondary Storage

solid-state disk

o |

I %

* nonvolatile storage

magnetic disk

Tertiary Storage

optical disk

A

* removable media

magnetic tapes

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Memory Management

» Motivation
o Keep several processes in memory to improve a system’s performance
» Selection of different memory management methods

> Application-dependent
o Hardware-dependent

» Memory — A large array of words or bytes, each with its own
address

o Memory is always too small

» What should be done

o Know which areas are free or used
o Decide which processes to get memory
o Perform allocation and de-allocation

- B

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Base and Limit Registers

» A pair of base and limit registers define the logical
address space

» CPU must check every memory access generated in
user mode Is between base and limit for that user

0 I
operating I
Systom | base base + limit
256000 I
process I
300040 < 300040 I Y Y
| address yes yes
process base I CPU 2 =
420940) 120900 || " "
limit |
process I
l trap to operating system
2000y I monitor—addressing error memory
1024000 !

© All Rights Reserved, Prof. Che-Wei Chang,

P,
=N - BRI ST
mpei=r R

- Lt &

Department of Computer Science and Information Engi

Binding of Instructions and Data to
Memory

» Address binding of instructions and data to memory
addresses can happen at three different stages

o Compile time: If memory location is known a priori, absolute

code can be generated =» must recompile code if starting
location changes

o Load time: Must generate relocatable code if memory
location is not known at compile time

o Execution time: Binding delayed until run time if the process

can be moved during its execution from one memory segment
to another

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informatic

Logical and Physical Address Space

» Logical address — generated by the CPU; also referred
to as virtual address

» Physical address — address seen by the memory unit

» Logical and physical addresses are the same In
compile-time and load-time address-binding schemes;
logical and physical addresses differ in execution-time
address-binding scheme

» Logical address space is the set of all logical
addresses generated by a program

» Physical address space Is the set of all physical
addresses generated by a program

© All Rights Reserved, Prof. Che-Wei Chang, == = k.
=1 FEEE

Department of Computer Science and Information

Dynamic Linking

» Static linking — system libraries and program code
combined by the loader into the binary program image

» Dynamic linking —linking postponed until execution
time

» Small piece of code, stub, used to locate the
appropriate memory-resident library routine

» Stub replaces itself with the address of the routine, and
executes the routine

» Dynamic linking is particularly useful for shared
libraries

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informati

Swapping

» A process can be swapped temporarily out of memory
to a backing store, and then brought back into memory
for continued execution

» Does the swapped out process need to swap back in to
the same physical addresses?

» Modified versions of swapping are found on many
systems (i.e., UNIX, Linux, and Windows)
o Swapping normally disabled
o Started If more than threshold amount of memory allocated
> Disabled again once memory demand reduced below threshold

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informat

Schematic View of Swapping

A

operating e
system
P
@ swap out PIOEESS5
_ process P,
@ swap in
I]
l

user v

ke backing store

main memory

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Swapping on Mobile Systems

» Not typically supported
> Flash memory
- Small amount of space
- Limited number of write cycles
- Poor throughput between flash memory and CPU on mobile
platform

» Instead use other methods to free memory if it is low
> 10S asks apps to voluntarily relinquish allocated memory
- Read-only data thrown out and reloaded from flash if needed
- Failure to free can result in termination

o Android terminates apps if low free memory, but first writes
application state to flash for fast restart

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Contiguous Allocation (1/2)

» Fixed Partitions
o Memory is divided into fixed partitions, e.g., OS/360
o A process is allocated on an entire partition

20k B
Partitions Partition 1{ proc 1
number size location status A5k 3
iti roc /
1 |25kB| 20k | Used Partition 2 P _
) 60k
15KB| 45k ..
> Used Partition 3 proc 5
3 |30KB| 60k | Used 00K 3
4 |10KB| 90k | Free Partition 4= 5o \
“fragmentation”
Departmon of Computer ScenceeA NN A FETPRL

Contiguous Allocation (2/2)

» Dynamic Partitions
o Partitions are dynamically created
o OS tables record free and used partitions

OS Base = 20k Base = 70k

20K size = 20KB"_x{size = 20KB
Process 1 user = 1 user=2 | =

40k

free
70K Base = 40k Base =90k |
00K Process 2 size - 30kB[size = 20KB 1

free)

110k Input Queue
P3 with a 40KB
AN memory request !

© All Rights Reserved, Prof. Che-Wei Chang, o i

it 16

Department of Computer Science and Information

Dynamic Allocation

» First-fit: Allocate the first hole that is big enough

» Best-fit: Allocate the smallest hole that Is big enough;
must search entire list, unless ordered by size
> Produces the smallest leftover hole

» Worst-fit: Allocate the largest hole; must also search

entire list
> Produces the largest leftover hole

= First-fit and best-fit are better than worst-fit in terms of
speed and storage utilization

© All Rights Reserved, Prof. Che-Wei Chang, == = k.
1 - PSR

Department of Computer Science and Information

Fragmentation

» External Fragmentation — total memory space exists
to satisfy a request, but it Is not contiguous

» Internal Fragmentation — allocated memory may be
slightly larger than requested memory; this size
difference Is memory internal to a partition, but not
being used

» First fit analysis reveals that given N blocks allocated,
0.5 N blocks lost to fragmentation
> 1/3 may be unusable -> 50-percent rule

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Fragmentation — Compaction

0 0 0 0
300K 300K 300K 300K
500K 500K 500K 500K
600K 600K 600K 600K

4OOKB 800K
1000K_ 1000K
1200K 1200K 1200K 9OOKB

300KB
1500K 1500K

. P4 | 900KB 900KB -
1900K 1900K
2100K ZOOKB 2100K 2100K 2100K
MOVE 600KB MOVE 400KB MOVE 200KB

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang (

User’s View of a Program

subroutine

symbol
table

Sqrt

main
program

logical address

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang

Logical View of Segmentation

user space physical memory space

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Segmentation

» Segmentation I1s a memory management scheme that
supports the user view of memory

> A logical address space is a collection of segments with
variable lengths

» Logical address consists of a tuple:
<segment-number, offset>

» Segment table — maps two-dimensional physical
addresses; each table entry has:

> pase — contains the starting physical address where the
segments reside in memory

o limit — specifies the length of the segment

© All Rights Reserved, Prof. Che-Wei Chang, = 28 99

Department of Computer Science and Information

Segmentation Architecture

.

limit |base
segment
table
CPU | S d
es
= Yy
no
Y
trap: addressing error physical memory

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Cha

Paging

» Objective
o Users see a logically contiguous address space although its
physical addresses are throughout physical memory
» Units of Memory and Backing Store

> Physical memory is divided into fixed-sized blocks called
frames

> The logical memory space of each process is divided into
blocks of the same size called pages

> The backing store is also divided into blocks of the same size if
used

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Address Translation Scheme

» Address generated by CPU is divided into:

o Page number (p) — used as an index into a page table which
contains base address of each page in physical memory

o Page offset (d) — combined with base address to define the
physical memory address that is sent to the memory unit

page number page offset
P d
m-n n

o For given logical address space 2™ and page size 2"

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Paging Hardware

N
7f
logical physical J
address address
; e
CPU > p | d f|d >
A
p —
— f
physical
page table memman

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang G

Paging Model of Logical and
Physical Memory

0
Page 0 0|1 1| Page 0
Page 1 1|4 2
Page 2 2 |3 3| Page 2
Page 3 3|7 4| Page 1
5
Logical Page 6
Memory Table
/| Page 3
Physical
Memory

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineeri

Free Frames

13 13 |page 1
@Iy 14 14 |page 0
— free-frame list :
page 0 14 15 free—frflg'ue list 15
page 1 13
page 2 18 16 i
page 3 20
18 18 |page 2
0|14
1|13 19 19
2|18
ES 20 20 [page 3
new-process page table
21 21

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang

Implementation of Page Table

» Page table is kept in main memory

» Page-table base register (PTBR) points to the page
table

» Page-table length register (PTLR) indicates size of
the page table

» The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
translation look-aside buffers (TLBs)

» Some TLBs store address-space identifiers (ASIDs)
In each TLB entry — uniquely identifies each process to
provide address-space protection for that process
o Otherwise need to flush at every context switch

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Paging Hardware With TLB

logical
address |
CPU — p | d
page frame
number number
TLB hit physical
address
Y Y
f d —
TLB 1
P
TLB miss
> f
— physical
memory
page table

© All Rights Reserved, Prof. Che-Wei Chang,

"
g’h $

Department of Computer Science and Information Engineering, C

Effective Access Time With TLB

» TLB Hitratio=p

» Consider p = 80%, 100ns for memory access
o Effective Access Time (EAT)
=0.80 x 100 + 0.20 x 200 = 120ns

» Consider more realistic hit ratio p = 99%, 100ns for
memory access
- EAT =0.99 x 100 + 0.01 x 200 = 101ns

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Memory Protection

» Valid (v) or Invalid (i) Bit in A Page Table

0
1
2| page 0
00000 frame number valid—invalid bit
page O \ / 3| page 1
O 28V
page 1 1 B 4| page 2
2|4 |v
age 2 5
st 3 [PV
page 3 48|V 6
5(9 | v
page 4 ¢ [EoN 7| page 3
7 [REAi
10,468| page 5 : 8| page 4
12,287 page table
9| page 5
page n

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang

Shared Pages

» Shared code

> One copy of read-only (reentrant) code shared among
processes (I.e., text editors, compilers, window systems)

o Similar to multiple threads sharing the same process space
o Also useful for inter-process communication if sharing of read-
write pages Is allowed
» Private code and data
o Each process keeps a separate copy of the code and data

> The pages for the private code and data can appear anywhere
In the logical address space

© All Rights Reserved, Prof. Che-Wei Chang, = Bl £ 8y g

Department of Computer Science and Information

An Example of Shared Pages

ed1 0
3
ed?2 4 1| datai
ed3 & 2| data3
1
data 1 page table 3| edt
for P
1 ed 1
process P, 2 4 ed 2
ed 2
" 5
ed 3 6
7 6 ed 3
data 2 page table
for P2 7 data 2
2ie 2 process P, 5
ed?2 4
9
ed3 6
- 10
data 3 page table
for P, 11
process P,

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang

Structure of the Page Table

» Memory structures for paging can get huge using
straight-forward methods

o Consider a 32-bit logical address space as on modern
computers, and the page size is 4 KB (21?)

> Page table would have 1 million entries (232 / 212)
o |f each entry is 4 bytes =» 4 MB of physical memory space for
a page table
» Advanced structure of the page table
o Hierarchical Paging
o Hashed Page Tables
o |Inverted Page Tables

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

=Rl iitrs 35

Two-Level Page-Table Scheme

» A logical address on 32-bit machine with 4K page size
IS divided Into:
o a page number consisting of 20 bits
o a page offset consisting of 12 bits

» Thus, a logical address is as follows:

page number page offset
P1 P d
10 10 12

» Where p, Is an index into the outer page table, and p, Is
the index Into the inner page table

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Address Translation Scheme of
Two-Level Paging

logical address
Bi|| Bl d

o

I

=

outer page
table 2 {

page of
page table

» The size of each table is 4KB if each entry has 4 Bytes

» The total size of the inner page tables is still 4MB, but
each Inner page table is created when it Is used

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Hashed Page Tables (1/2)

» Objective:
o To handle large address spaces

» Virtual address = hash function - a linked list of
elements: (virtual page number, frame number, a pointer)

» Clustered Page Tables

o Each entry contains the mappings for several physical-page
frames, e.g., 16

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Hashed Page Tables (2/2)

physical
logical address | address
P d r d

physical
-—»IqlsﬂThlplrl_Tm memory

hash table

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang

Inverted Page Table Architecture

(1/2)

» Only on page table for all processes

» Each entry corresponds to a physical frame.
> Virtual Address: <Process ID, Page Number, Offset>

o Long search time to find out the match
o Difficult to implement with shared memory

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Inverted Page Table Architecture

(2/2)

logical .
address physical
¢ address ohysical
CPU > pd| p | d |A d memory

R_(-_,J

search l

pid

-

page table

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Example: The Intel IA-32
Architecture

» Supports both segmentation and paging
o Each segment can be 4 GB
o Up to 16 K segments per process

logical linear physical

address " segmentation address . paging address y physical

unit unit memory

CPU

» Two-level paging

page number page offset
P1 1. d
10 10 12

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

