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 To provide a detailed description of various ways of 

organizing memory hardware

 To discuss various memory-management techniques, 

including paging and segmentation
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 Program must be brought (from disk)  into memory and 

placed within a process for it to be run

 Main memory and registers are the storages which CPU 

can access directly

 Register access is in one CPU clock (or less)

 Main memory access can take cycles, causing a stall

 Cache sits between main memory and CPU registers
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Primary Storage

• volatile storage 

Tertiary Storage

• removable media

Secondary Storage

• nonvolatile storage 

 Access time: a cycle

 Access time: several  

cycles

 Access time: many 

cycles



 Motivation

◦ Keep several processes in memory to improve a system’s performance

 Selection of different memory management methods

◦ Application-dependent

◦ Hardware-dependent

 Memory – A large array of words or bytes, each with its own 

address

◦ Memory is always too small

 What should be done

◦ Know which areas are free or used

◦ Decide which processes to get memory

◦ Perform allocation and de-allocation
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 A pair of base and limit registers define the logical 

address space

 CPU must check every memory access generated in 

user mode is between base and limit for that user
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 Address binding of instructions and data to memory 

addresses can happen at three different stages

◦ Compile time:  If memory location is known a priori, absolute 

code can be generated ➔ must recompile code if starting 

location changes

◦ Load time:  Must generate relocatable code if memory 

location is not known at compile time

◦ Execution time:  Binding delayed until run time if the process 

can be moved during its execution from one memory segment 

to another
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 Logical address – generated by the CPU; also referred 
to as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in 
compile-time and load-time address-binding schemes; 
logical and physical addresses differ in execution-time 
address-binding scheme

 Logical address space is the set of all logical 
addresses generated by a program

 Physical address space is the set of all physical 
addresses generated by a program
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 Static linking – system libraries and program code 

combined by the loader into the binary program image

 Dynamic linking –linking postponed until execution 

time

 Small piece of code, stub, used to locate the 

appropriate memory-resident library routine

 Stub replaces itself with the address of the routine, and 

executes the routine

 Dynamic linking is particularly useful for shared 

libraries
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 A process can be swapped temporarily out of memory 

to a backing store, and then brought back into memory 

for continued execution

 Does the swapped out process need to swap back in to 

the same physical addresses?

 Modified versions of swapping are found on many 

systems (i.e., UNIX, Linux, and Windows)

◦ Swapping normally disabled

◦ Started if more than threshold amount of memory allocated

◦ Disabled again once memory demand reduced below threshold
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 Not typically supported

◦ Flash memory

 Small amount of space

 Limited number of write cycles

 Poor throughput between flash memory and CPU on mobile 

platform

 Instead use other methods to free memory if it is low

◦ iOS asks apps to voluntarily relinquish allocated memory

 Read-only data thrown out and reloaded from flash if needed

 Failure to free can result in termination

◦ Android terminates apps if low free memory, but first writes 

application state to flash for fast restart
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 Fixed Partitions
◦ Memory is divided into fixed partitions, e.g., OS/360

◦ A process is allocated on an entire partition
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 Dynamic Partitions

◦ Partitions are dynamically created

◦ OS tables record free and used partitions
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 First-fit:  Allocate the first hole that is big enough

 Best-fit:  Allocate the smallest hole that is big enough; 
must search entire list, unless ordered by size  
◦ Produces the smallest leftover hole

 Worst-fit:  Allocate the largest hole; must also search 
entire list  
◦ Produces the largest leftover hole

➔First-fit and best-fit are better than worst-fit in terms of 
speed and storage utilization
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 External Fragmentation – total memory space exists 

to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be 

slightly larger than requested memory; this size 

difference is memory internal to a partition, but not 

being used

 First fit analysis reveals that given N blocks allocated, 

0.5 N blocks lost to fragmentation

◦ 1/3 may be unusable -> 50-percent rule
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user space physical memory space



 Segmentation is a memory management scheme that 
supports the user view of memory
◦ A logical address space is a collection of segments with 

variable lengths

 Logical address consists of a tuple:

<segment-number, offset>

 Segment table – maps two-dimensional physical 
addresses; each table entry has:
◦ base – contains the starting physical address where the 

segments reside in memory

◦ limit – specifies the length of the segment
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 Objective
◦ Users see a logically contiguous address space although its 

physical addresses are throughout physical memory

 Units of Memory and Backing Store
◦ Physical memory is divided into fixed-sized blocks called 

frames

◦ The logical memory space of each process is divided into 
blocks of the same size called pages

◦ The backing store is also divided into blocks of the same size if 
used
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 Address generated by CPU is divided into:

◦ Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory

◦ Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit

◦ For given logical address space 2m and page size 2n
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 Page table is kept in main memory

 Page-table base register (PTBR) points to the page 
table

 Page-table length register (PTLR) indicates size of 
the page table

 The two memory access problem can be solved by the 
use of a special fast-lookup hardware cache called  
translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs)
in each TLB entry – uniquely identifies each process to 
provide address-space protection for that process
◦ Otherwise need to flush at every context switch
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 TLB Hit ratio = p

 Consider p = 80%, 100ns for memory access
◦ Effective Access Time (EAT) 

= 0.80 x 100 + 0.20 x 200 = 120ns

 Consider more realistic hit ratio p = 99%, 100ns for 
memory access
◦ EAT = 0.99 x 100 + 0.01 x 200 = 101ns
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 Valid (v) or Invalid (i) Bit in A Page Table
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 Shared code

◦ One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems)

◦ Similar to multiple threads sharing the same process space

◦ Also useful for inter-process communication if sharing of read-

write pages is allowed

 Private code and data 

◦ Each process keeps a separate copy of the code and data

◦ The pages for the private code and data can appear anywhere 

in the logical address space
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 Memory structures for paging can get huge using 

straight-forward methods

◦ Consider a 32-bit logical address space as on modern 

computers, and the page size is 4 KB (212)

◦ Page table would have 1 million entries (232 / 212)

◦ If each entry is 4 bytes ➔ 4 MB of physical memory space for 

a page table

 Advanced structure of the page table

◦ Hierarchical Paging

◦ Hashed Page Tables

◦ Inverted Page Tables
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 A logical address on 32-bit machine with 4K page size 
is divided into:
◦ a page number consisting of 20 bits

◦ a page offset consisting of 12 bits

 Thus, a logical address is as follows:

 Where p1 is an index into the outer page table, and p2 is 
the index into the inner page table
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page number page offset

p1 p2 d

10 10 12



 The size of each table is 4KB if each entry has 4 Bytes

 The total size of the inner page tables is still 4MB, but 

each inner page table is created when it is used
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 Objective:

◦ To handle large address spaces

 Virtual address → hash function → a linked list of 

elements: (virtual page number, frame number, a pointer)

 Clustered Page Tables

◦ Each entry contains the mappings for several physical-page 

frames, e.g., 16
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 Only on page table for all processes

 Each entry corresponds to a physical frame.

◦ Virtual Address: <Process ID, Page Number, Offset>

◦ Long search time to find out the match

◦ Difficult to implement with shared memory
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 Supports both segmentation and paging

◦ Each segment can be 4 GB

◦ Up to 16 K segments per process

 Two-level paging
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