
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling
6. Synchronization
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems
12. Secondary-Storage Systems

 To provide a detailed description of various ways of

organizing memory hardware

 To discuss various memory-management techniques,

including paging and segmentation

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Program must be brought (from disk) into memory and

placed within a process for it to be run

 Main memory and registers are the storages which CPU

can access directly

 Register access is in one CPU clock (or less)

 Main memory access can take cycles, causing a stall

 Cache sits between main memory and CPU registers

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Primary Storage

• volatile storage

Tertiary Storage

• removable media

Secondary Storage

• nonvolatile storage

 Access time: a cycle

 Access time: several

cycles

 Access time: many

cycles

 Motivation

◦ Keep several processes in memory to improve a system’s performance

 Selection of different memory management methods

◦ Application-dependent

◦ Hardware-dependent

 Memory – A large array of words or bytes, each with its own

address

◦ Memory is always too small

 What should be done

◦ Know which areas are free or used

◦ Decide which processes to get memory

◦ Perform allocation and de-allocation

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A pair of base and limit registers define the logical

address space

 CPU must check every memory access generated in

user mode is between base and limit for that user

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Address binding of instructions and data to memory

addresses can happen at three different stages

◦ Compile time: If memory location is known a priori, absolute

code can be generated ➔ must recompile code if starting

location changes

◦ Load time: Must generate relocatable code if memory

location is not known at compile time

◦ Execution time: Binding delayed until run time if the process

can be moved during its execution from one memory segment

to another

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Logical address – generated by the CPU; also referred
to as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in
compile-time and load-time address-binding schemes;
logical and physical addresses differ in execution-time
address-binding scheme

 Logical address space is the set of all logical
addresses generated by a program

 Physical address space is the set of all physical
addresses generated by a program

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Static linking – system libraries and program code

combined by the loader into the binary program image

 Dynamic linking –linking postponed until execution

time

 Small piece of code, stub, used to locate the

appropriate memory-resident library routine

 Stub replaces itself with the address of the routine, and

executes the routine

 Dynamic linking is particularly useful for shared

libraries

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A process can be swapped temporarily out of memory

to a backing store, and then brought back into memory

for continued execution

 Does the swapped out process need to swap back in to

the same physical addresses?

 Modified versions of swapping are found on many

systems (i.e., UNIX, Linux, and Windows)

◦ Swapping normally disabled

◦ Started if more than threshold amount of memory allocated

◦ Disabled again once memory demand reduced below threshold

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Not typically supported

◦ Flash memory

 Small amount of space

 Limited number of write cycles

 Poor throughput between flash memory and CPU on mobile

platform

 Instead use other methods to free memory if it is low

◦ iOS asks apps to voluntarily relinquish allocated memory

 Read-only data thrown out and reloaded from flash if needed

 Failure to free can result in termination

◦ Android terminates apps if low free memory, but first writes

application state to flash for fast restart

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Fixed Partitions
◦ Memory is divided into fixed partitions, e.g., OS/360

◦ A process is allocated on an entire partition

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

proc 1

proc 7

proc 5

20k

45k

60k

90k

100k

Partition 1

Partition 2

Partition 3

Partition 4

“fragmentation”

Partitions

number size location status

1

2

3

4

25KB 20k

15KB 45k

30KB 60k

90k10KB

Used

Used

Used

Free

 Dynamic Partitions

◦ Partitions are dynamically created

◦ OS tables record free and used partitions

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Used
Base = 20k

size = 20KB

user = 1

Base = 70k

size = 20KB

user = 2

Free
Base = 40k

size = 30KB

Base = 90k

size = 20KB

Input Queue

P3 with a 40KB

memory request !

free

free

OS

Process 1

Process 2

20k

40k

70k

90k

110k

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size
◦ Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search
entire list
◦ Produces the largest leftover hole

➔First-fit and best-fit are better than worst-fit in terms of
speed and storage utilization

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 External Fragmentation – total memory space exists

to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be

slightly larger than requested memory; this size

difference is memory internal to a partition, but not

being used

 First fit analysis reveals that given N blocks allocated,

0.5 N blocks lost to fragmentation

◦ 1/3 may be unusable -> 50-percent rule

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

900KB

*P4

900KB

OS

P1

P2

400KB

P3
300KB

P4

200KB

0

300K

500K

600K

1000K

1200K

1500K

1900K

2100K

MOVE 600KB MOVE 400KB MOVE 200KB

OS

P1

P2
*P3

0

300K

500K

600K

800K

1200K

2100K

OS

P1

P2

*P4

P3

0

300K

500K

600K

1000K

1200K

2100K

OS

P1

P2

900KB

P4

*P3

0

300K

500K

600K

1500K

1900K

2100K

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

user space physical memory space

 Segmentation is a memory management scheme that
supports the user view of memory
◦ A logical address space is a collection of segments with

variable lengths

 Logical address consists of a tuple:

<segment-number, offset>

 Segment table – maps two-dimensional physical
addresses; each table entry has:
◦ base – contains the starting physical address where the

segments reside in memory

◦ limit – specifies the length of the segment

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Objective
◦ Users see a logically contiguous address space although its

physical addresses are throughout physical memory

 Units of Memory and Backing Store
◦ Physical memory is divided into fixed-sized blocks called

frames

◦ The logical memory space of each process is divided into
blocks of the same size called pages

◦ The backing store is also divided into blocks of the same size if
used

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Address generated by CPU is divided into:

◦ Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

◦ Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

◦ For given logical address space 2m and page size 2n

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

page number page offset

p d

m - n n

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

d

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Page 0

Page 1

Page 2

Page 3

0

1

2

3

4

5

6

7

Logical

Memory

Physical

Memory

0 1

1 4

2 3

3 7

Page

Table

0

1 Page 0

2

3 Page 2

4 Page 1

5

6

7 Page 3

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page
table

 Page-table length register (PTLR) indicates size of
the page table

 The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs)
in each TLB entry – uniquely identifies each process to
provide address-space protection for that process
◦ Otherwise need to flush at every context switch

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 TLB Hit ratio = p

 Consider p = 80%, 100ns for memory access
◦ Effective Access Time (EAT)

= 0.80 x 100 + 0.20 x 200 = 120ns

 Consider more realistic hit ratio p = 99%, 100ns for
memory access
◦ EAT = 0.99 x 100 + 0.01 x 200 = 101ns

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Valid (v) or Invalid (i) Bit in A Page Table

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Shared code

◦ One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems)

◦ Similar to multiple threads sharing the same process space

◦ Also useful for inter-process communication if sharing of read-

write pages is allowed

 Private code and data

◦ Each process keeps a separate copy of the code and data

◦ The pages for the private code and data can appear anywhere

in the logical address space

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Memory structures for paging can get huge using

straight-forward methods

◦ Consider a 32-bit logical address space as on modern

computers, and the page size is 4 KB (212)

◦ Page table would have 1 million entries (232 / 212)

◦ If each entry is 4 bytes ➔ 4 MB of physical memory space for

a page table

 Advanced structure of the page table

◦ Hierarchical Paging

◦ Hashed Page Tables

◦ Inverted Page Tables

35
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A logical address on 32-bit machine with 4K page size
is divided into:
◦ a page number consisting of 20 bits

◦ a page offset consisting of 12 bits

 Thus, a logical address is as follows:

 Where p1 is an index into the outer page table, and p2 is
the index into the inner page table

36
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

page number page offset

p1 p2 d

10 10 12

 The size of each table is 4KB if each entry has 4 Bytes

 The total size of the inner page tables is still 4MB, but

each inner page table is created when it is used

37
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Objective:

◦ To handle large address spaces

 Virtual address → hash function → a linked list of

elements: (virtual page number, frame number, a pointer)

 Clustered Page Tables

◦ Each entry contains the mappings for several physical-page

frames, e.g., 16

38
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

39
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Only on page table for all processes

 Each entry corresponds to a physical frame.

◦ Virtual Address: <Process ID, Page Number, Offset>

◦ Long search time to find out the match

◦ Difficult to implement with shared memory

40
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

41
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Supports both segmentation and paging

◦ Each segment can be 4 GB

◦ Up to 16 K segments per process

 Two-level paging

42
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

