Operating System
Concepts

Che-Wel Chang
chewei@mail.cqu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Contents

Introduction

System Structures

Process Concept
Multithreaded Programming
Process Scheduling
Synchronization

Deadlocks
Memory-Management Strategies
Virtual-Memory Management
File System

Implementing File Systems
Secondary-Storage Systems

© 0 N o g B~ LD

el i
NS

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineerin

Chapter 9. Virtual-
Memory Management

Objectives
» To describe the benefits of a virtual memory system

» To explain the concepts of demand paging, page-
replacement algorithms, and allocation of page frames

» To discuss the principle of the working-set model

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Background

» Virtual Memory
o Atechnique that allows the execution of a process that may not
be completely in memory
» Motivation

> An entire program in execution may not all be needed at the
same time
- Error handling routines
- Alarge array

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Virtual Memory

» Potential Benefits

> Programs can be much larger than the amount of physical
memory

- Users can concentrate on their problem programming

> The level of multiprogramming increases because processes
occupy less physical memory

o Each user program may run faster because less 1/0O is needed
for loading or swapping user programs

» Implementation: demand paging

© All Rights Reserved, Prof. Che-Wei Chang,

A Ty

P

Department of Computer Science and Information E

Demand Paging- Lazy Swapper

» Process image may reside on the backing store

o Rather than swap in the entire process image into memory
Lazy Swapper only swaps in a page when it is needed

» A'mechanism is required to recover from the missing of
non-resident referenced pages

o A Page Fault occurs when a process references a non-memory-
resident page

'sw%fﬁ%ﬁ 7

o

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Hardware Support for Demand
Paging

» New bits in the page table
o To Indicate that a page IS now in memory or not

» Secondary storage management

o Swap space in the backing store

- A continuous section of space in the secondary storage for better
performance

© All Rights Reserved, Prof. Che-Wei Chang, 8

Department of Computer Science and Information Engine

Valid-Invalid Bits

0
.1
0 A 2
valid—invalid
1 B frame bit 3
2 C ol 4 [v 4 A
3| D 1 i 5
2| 6 |v
4 E 3 i 6 C
5 F % i 7
5/ 9 |v
6 G 6 i 8
7 H 7 i 9 E
logical page table 10
memory
11
12
13
14
15

physical memory

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang (

HEERN
[] [a] [E]
lc] [0] [E]
H N N

Steps in Handling a Page Fault

page is on
backing store

operating
system

@

reference
trap

load M '= N i
restart page table
instruction

free frame te ~ i
® @

reset page bring in
table missing page

physical
memory

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Copy-on-Write

» Copy-on-Write (COW) allows both parent and child
processes to initially share the same pages in memory
o |f either process modifies a shared page, then the page is

copied

» COW allows more efficient process creation as only
modified pages are copied

» In general, free pages are allocated from a pool of
zero-fill-on-demand pages

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Performance of Demand Paging

» Page Fault Rate0<p<1
o 1If p = 0 no page faults
o If p =1, every reference is a fault

» Effective Access Time (EAT)
EAT = (1 — p) X memory-access time
+ p (page fault overhead
+ swap page out
+ swap page In
+ restart overhead)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

An Example of Demand Paging

» Memory access time = 200 nanoseconds
» Average page-fault service time = 8 milliseconds
» EAT =(1-p) x 200 + p x 8,000,000

=200 + p x 7,999,800

» If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds!

» If we want performance degradation < 10 percent
o 220> 200 + 7,999,800 x p
> p < 0.0000025

© All Rights Reserved, Prof. Che-Wei Chang, == = B 10
1 - FEEE

Department of Computer Science and Information

Performance Improvement of
Demand Paging

» Preload processes into the swap space before they start
up

» Preload pages into the main memory before the pages
are used

» Design a good page replacement algorithm

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Algorithms for Demand Paging

» Frame Allocation Algorithms
- How many frames are allocated to a process?
» Page Replacement Algorithms

> When page replacement Is required, select the
frame that is to be replaced!

» Goal: A low page fault rate!

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Page Replacement

» Demand paging increases the multiprogramming level
of a system by “potentially” over-allocating memory
o Total physical memory = 40 frames
> Run six processes of size equal to 10 frames
o Each process currently uses only 5 frames

=» 10 spare frames

» Most of the time, the average memory usage is close to
the physical memory size if we increase a system’s
multiprogramming level

© All Rights Reserved, Prof. Che-Wei Chang, = Bl TTVEL

Department of Computer Science and Information

Victim Pages

What happens if there is no free frame?

frame valid—invalid bit

N ¥

change

f| wvictim 7

reset page
table for
new page

page table

physical
memory

© All Rights Reserved, Prof. Che-Wei Chang,

swap out
victim

@ swap

desired
page in

Department of Computer Science and Information Engineering, Chang

N
e

Page A | f |i to invalid 0 page Data of Pag
PageB | f |v ® /

Dat

'a of Page B

A Page-Fault Service

» Find the desired page on the disk

» FInd a free frame

o Select a victim and write the victim page out when there is no
free frame

» Read the desired page into the selected frame

» Update the page and frame tables, and restart the user
process

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Page Replacement —
FIFO Algorithm

» First In First Out (FIFO) Implementation
1. Each page is given a time stamp when it is brought into
memory
2. Select the oldest page for replacement

reference
2 0 3 0 4 2 3 O 7

string ! 0 1
frames
FIFO (7 7 0 1 2 3 0 4 2 3
queue 0O 0 1 2 3 0 4 2 3 0
1 2 3 0 4 2 3 O 1

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, ¢

Page Replacement —
Optimal Algorithm

» Optimality
> One with the lowest page fault rate
» Replace the page that will not be used for the longest period

of time =» It needs future prediction

reference
2 0 3 0 4 2 3 O 7 0 1

string
frames

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engineering

Page Replacement —
Least-Recently-Used Algorithm

» Least-Recently-Used Algorithm (LRU)
> We don’t have knowledge about the future
> Thus, we use the history of page referencing in the past to
predict the future

=>» However, it is too expensive to update the time stamp for each memory access!

reference

string 2 0 3 0 4 23 0 32 1 2 0 1 7 012

frames

| RU 7 01 2 03 0 4 2 3 0 3 21 2 01 7 01

queue 7 01 2 0 3 0 4 2 3 0 3 2 1 2 01 170
7 0 1 2 2 3 0 4 2 2 0 3 3 1 2 0 117

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Page Replacement —
LRU Approximation Algorithms

» Second-Chance Reference Page | Reference Page
Algorithm Bit - Bit
> When a page is selected . - | . -
- Take it as a victim if its |
reference bit =0 =) i . -
- Otherwise, clear the bit and i

advance to the next page

» Basic Data Structure

o Use a reference bit for each
page in memory

o Define a circular FIFO
queue of pages

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Enhanced Second-Chance
Algorithm

» Considering the reference bit and the modify bit as an ordered
pair
Low ° (0, 0) neither recently used nor modified — best page to replace
Priority 5 (0, 1) not recently used but modified — the page will need to be

1 written out before replacement
> (1, 0) recently used but clean — probably will be used again soon

High 5 (1, 1) recently used and modified - probably will be used again
Priority . ; . .
soon, and the page will need to be written out to disk before it can

be replaced
» We replace the first page encountered in the lowest nonempty

class

© All Rights Reserved, Prof. Che-Wei Chang, == 77 | f 3 23

Department of Computer Science and Informatio

Counting-Based Algorithms

Motivation:

o Count the number of references made to each page, instead of their
referencing times

Least Frequently Used Algorithm (LFU)

o LFU pages are less actively used pages

o Hazard: Some heavily used pages may no longer be used

A Solution — Aging

o Pages with the smallest number of references are probably just

brought in and has yet to be used

Most Frequently Used Algorithm (MFU)
LFU & MFU replacement schemes can be fairly expensive
They do not approximate OPT very well

v

v

v v v

© All Rights Reserved, Prof. Che-Wei Chang, - e Uy

Department of Computer Science and Informatio

Page Buffering

» Basic ldea: to reduce the latency for writing victims out
o Systems keep a pool of free frames
o Desired pages are first “swapped in”” some frames 1n the pool
> When the selected page (victim) is later written out, its frame
IS returned to the pool
» Basic Approach
o Maintain a list of modified pages

> Whenever the paging device is idle, a modified page is written
out and reset its “modify bit”

> The clean pages can be included in the pool

© All Rights Reserved, Prof. Che-Wei Chang,

=SB ity 2

Department of Computer Science and Information

Allocation of Frames (1/2)

» Each process needs minimum number of frames
» Example: IBM 370 — 6 pages to handle SS MOVE
Instruction:
o Instruction is 6 bytes, might span 2 pages
o 2 pages to handle from
o 2 pages to handle to
» Maximum of course is total frames in the system

» Fixed allocation

o Use a formula to derive the number of required frames for each
application

» Dynamic allocation

o Measure some behavior, e.g. page fault rated, to know the needs of
applications

© All Rights Reserved, Prof. Che-Wei Chang,

=B s0 2

Department of Computer Science and Information

Allocation of Frames (2/2)

» Global Allocation
o Processes can take frames from others
o For example, high-priority processes can increase its frame
allocation at the expense of the low-priority processes
» Local Allocation

o Processes can only select frames from their own allocated
frames

o The set of pages in memory for a process is affected by the
paging behavior of only that process

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Non-Uniform Memory Access

» Many systems are NUMA — speed of access to memory
varies

o Consider system boards containing CPUs and memory,
Interconnected over a system bus

» Optimal performance comes from allocating memory
“close to”” the CPU on which the thread 1s scheduled

> Modifying the scheduler to schedule the thread on the same
CPU when possible

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Thrashing (1/2)

» If a process does not have “enough” memory frames,

the page-fault rate is very high

o Page fault to get pages into memory frames

> Replace existing pages in frames

> But soon need to get the replaced pages back

o This leads to:
- Low CPU utilization
- Operating system is then thinking that it needs to increase the
degree of multiprogramming
- Another processes are added to the system
- More page faults

» Thrashing = Process Is busy swapping pages in and out

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Thrashing (2/2)

CPU utilization

" thrashing

degree of multiprogramming

Be careful of the page fault rate

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Page-Fault Frequency

» Establish “acceptable” page-fault frequency rate and use local

replacement policy

o Control thrashing directly through the observation on the page-fault rate

o |f actual rate too low, process loses frame
o |f actual rate too high, process gains frame

F 3

page-fault rate

increase number
of frames

upper bound

lower bound
decrease number

of frames

number of frames

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

SE iy a

Working-Set Model (1/2)

page reference table
...2615777751623412344434344413234443444...

WS(t,) = {1.2,5,6,7) WSi(t,) = {3.4)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang €

Working-Set Model (2/2)

» A = a working-set window = a fixed number of page
references
o Example: 10,000 instructions
» WSS; (working set of Process P;) =
total number of pages referenced in the most recent A
o 1If A Is too small: will not encompass entire locality
o If A is too large: will encompass several localities
o If A = o0: will encompass entire program
» D= X WSS, = total demand frames
o Approximation of locality

» 1If D > the number of frames = Thrashing

© All Rights Reserved, Prof. Che-Wei Chang, = #4533

Department of Computer Science and Informatic

Memory-Mapped Files

» Memory-mapped file I/O allows file 1/O to be treated
as routine memory access by mapping a disk block to a
page in memory
o But when does written data make it to disk?

o Periodically and/or at file close () time

————— 1
: —t] 2
- —-r - =+ 3
i +F-=-=-- 1 - 4
2 - - = 3 pet. % b 5
3 R e r:-:—r— 6
4 e | 1y :
5 iR EEE 6 e o |
6 —+-:-|—+’ 1
B b
11 b= 1 o= =12
ssssss A | I 5 « — —|--! rocess B
virtual memory : = : virtual memory
——|= 4 > 4 ~ied ol it
— — — __; 2 <- 1
physical memory

= —
I = = I R)
disk file

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Memory-Mapped I/0O

» Processor can have direct access

» Memory-Mapped I/O

(1) Frequently used devices

(2) Devices must be fast, such as video controller, or special 1/0
Instructions are used to move data between memory &
device controller registers

» Programmed 1/O — polling
o or interrupt-driven handling

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Kernel Memory Allocation (1/2)

» The Buddy System 2EEKE
o A fixed-size segment of -

physically contiguous /\

pages 128KB 128KB

> A power-of-2 allocator /‘\

> Advantage: quick
coalescing algorithms

o Disadvantage: internal /\
fragmentation 32K8| |32KB

64KB |64KB

© All Rights Reserved, Prof. Che-Wei Chang, - .
Al £ A Y 36

Department of Computer Science and Information

Kernel Memory Allocation (2/2)

» Slab Allocation

o Slab: one or more physically contiguous pages
o Cache: one or more slabs with the same size

kernel objects caches slabs
_ - __—
3-KB —
objects i
S~ physically
B s = contiguous
e pages
-_/
7-KB / 4
objects >
JE———

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineerin

Other Considerations: Pre-Paging

» Pre-Paging
> Bring into memory at one time all the pages that will be

needed!

out
ready suspended
processes @m/ed processes

Do pre-paging if the working set is known!
» Issue

Pre-Paging Cost <— Cost of Page Fault Services

Not every page in the working set will be used!

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Other Considerations: Page Size

» Page Size
Better |
Resolution) Page Size)
for Locality & ¢ma o | d large
Internal

12 22
Fragmentation 27 (4KB) to 2% (4MB)

o Trends: Large Page Size

Smaller Page
Table Size &
Better I/O
Efficiency

"." The CPU speed and the memory capacity grow much faster

than the disk speed!

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Other Considerations: TLB Reach

» TLB Reach - The amount of memory accessible from
the TLB

» TLB Reach = (TLB Size) X (Page Size)

» ldeally, the working set of each process Is stored in the

TLB
o Otherwise there is a high degree of page faults

» Increase the Page Size

o This may lead to an increase in fragmentation as not all
applications require a large page size

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Other Considerations:
Program Structures

» Program Structures:

o int data [1024][10247;
o Each row is stored in one page
o Program 1

for (3 = 0;

1024 x 1024 page faults

o Program 2
for (1 = 0, 1 < 1024, i++)

1024 page faults

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineeri

Other Considerations:
/0O Interlock

» 1/O Interlock — Pages must sometimes be locked into
memory

» Consider I/O - Pages that are used for copying a file
from a device must be locked from being selected for
eviction by a page replacement algorithm

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Contents

Introduction

System Structures

Process Concept
Multithreaded Programming
Process Scheduling
Synchronization

Deadlocks
Memory-Management Strategies
Virtual-Memory Management
File System

Implementing File Systems
Secondary-Storage Systems

© 0 N o g B~ LD

!

e
A S

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineerin

File Concepts

File Attributes

» Name — only information kept in human-readable form

Identifier — unique tag (number) identifies file within file
system

Type — needed for systems that support different types
Location — pointer to file location on device

Size — current file size

Protection — controls who can do reading, writing, executing

Time, date, and user identification — data for protection,
security, and usage monitoring

» Information about files are kept in the directory structure,
which is maintained on the disk

» Many variations, including extended file attributes such as file
checksum

v

v v Vv Vv Vv

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informat

File Operations

» File Is an abstract data type

» Create

» Write — at write pointer location
» Read — at read pointer location
» Reposition within file - seek

» Delete

» Truncate

» Open(F;) — search the directory structure on disk for
entry F;, and move the content of entry to memory

» Close (F;) — move the content of entry F; in memory
to directory structure on disk

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

File Systems

» Microsoft Windows File Systems
> FAT
> NTFS
o eXFAT
» Linux File Systems
o ext2
o ext3
o extd
o JFFS = for Flash devices
» Network File Systems
> NFS
o Samba

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Schematic View of Virtual File

System

File-System Interface

|

VFES Interface

— —

Local File System
Type 1 (e.g. NTFS)

Local File System
Type 2 (e.g. ext4)

Remote File System
Type 1 (e.g. NFS)

Disk with
Windows 8.1

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineerin

Virtual File System

» Virtual File Systems (VFS) on provide an object-oriented way
of implementing file systems

» VFS allows the same system call interface (the API) to be used
for different types of file systems

o Separates file-system generic operations from implementation details

o Implementation can be one of many file systems types, or network file
system

o Then dispatches operation to appropriate file system implementation
routines

» The APl is to the VFS interface, rather than any specific type
of file system

© All Rights Reserved, Prof. Che-Wei Chang, 49

Department of Computer Science and Information

Mass-Storage Structure

Moving-Head Disk Mechanism

track t <— spindle
F .’g
T <— arm assembly
sector s : :
I
- . | S 1 .~.
The size of a sector is = - ==
from 512B to 4KB ' '
| | .
cylinder ¢ — | read-write
| | head
I I
s Tz | Ll
platter
Y_) arm A7
rotation

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Disk Scheduling

» The disk 1/O request specifies several pieces of
Information:
o \Whether this operation is input or output
o What the disk address for the transfer is
o What the memory address for the transfer is
o What the number of sectors to be transferred is

» When there are multiple request pending, a good disk
scheduling algorithm is required
o Fairness: which request Is the most urgent one
o Performance: sequential access Is preferred

Cylinders |1 2 3 4 5 6 7

Requests 5 7 2 6 4 1 3 % Resort the requests?

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informatio

= \ » f 22t 3%h 52

Magnetic Disk Performance

» Access Latency = Average access time = average seek
time + average rotation latency
o For fastest disk 3ms + 2ms = 5ms
o For slow disk 9ms + 5.56ms = 14.56ms

» Average I/O time = average access time + (amount to
transfer / transfer rate) + controller overhead

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

System Protection and
Security

Principles of Protection

» Principle of Least Privilege

o Programs, users and systems should be given just enough
privileges to perform their tasks

o Limits damage If entity has a bug or gets abused

» Principle of Need-to-Know

o At any time, a process should be able to access only those
resources that it currently requires to complete its task

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Security Violation Categories

» Breach of confidentiality
o Unauthorized reading of data

» Breach of integrity

o Unauthorized modification of data
» Breach of availability

o Unauthorized destruction of data
» Theft of service

o Unauthorized use of resources

» Denial of service (DOS)
> Prevention of legitimate use

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Secure Communication over
Insecure Medium

ol
o
=
=
]
*
=

encryption
algorithm
E

(o]

Q.
o
pom 25
@
-
@
=

key =
exchange 5
(2]
c

3

<«— attacker

—_—

channel

() (x

decryption
algorithm
D

decryption
key k

3

(w)@a =
xajuie|d

read message m

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Scenario of Asymmetric Encryption

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang

