
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling
6. Synchronization
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems
12. Secondary-Storage Systems

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-

replacement algorithms, and allocation of page frames

 To discuss the principle of the working-set model

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Virtual Memory

◦ A technique that allows the execution of a process that may not

be completely in memory

 Motivation

◦ An entire program in execution may not all be needed at the

same time

 Error handling routines

 A large array

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Potential Benefits
◦ Programs can be much larger than the amount of physical

memory

 Users can concentrate on their problem programming

◦ The level of multiprogramming increases because processes
occupy less physical memory

◦ Each user program may run faster because less I/O is needed
for loading or swapping user programs

 Implementation: demand paging

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Process image may reside on the backing store

◦ Rather than swap in the entire process image into memory

Lazy Swapper only swaps in a page when it is needed

 A mechanism is required to recover from the missing of

non-resident referenced pages

◦ A Page Fault occurs when a process references a non-memory-

resident page

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 New bits in the page table

◦ To indicate that a page is now in memory or not

 Secondary storage management

◦ Swap space in the backing store

 A continuous section of space in the secondary storage for better

performance

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Copy-on-Write (COW) allows both parent and child

processes to initially share the same pages in memory

◦ If either process modifies a shared page, then the page is

copied

 COW allows more efficient process creation as only

modified pages are copied

 In general, free pages are allocated from a pool of

zero-fill-on-demand pages

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Page Fault Rate 0 ≤ p ≤ 1

◦ if p = 0 no page faults

◦ if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x memory-access time

+ p (page fault overhead

+ swap page out

+ swap page in

+ restart overhead)

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p x 8,000,000

= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds!

 If we want performance degradation < 10 percent

◦ 220 > 200 + 7,999,800 x p

◦ p < 0.0000025

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Preload processes into the swap space before they start

up

 Preload pages into the main memory before the pages

are used

 Design a good page replacement algorithm

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Frame Allocation Algorithms

◦ How many frames are allocated to a process?

 Page Replacement Algorithms

◦ When page replacement is required, select the
frame that is to be replaced!

 Goal: A low page fault rate!

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Demand paging increases the multiprogramming level
of a system by “potentially” over-allocating memory
◦ Total physical memory = 40 frames

◦ Run six processes of size equal to 10 frames

◦ Each process currently uses only 5 frames

➔ 10 spare frames

 Most of the time, the average memory usage is close to
the physical memory size if we increase a system’s
multiprogramming level

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Page A
Page B

Data of Page A

Data of Page B

 Find the desired page on the disk

 Find a free frame

◦ Select a victim and write the victim page out when there is no

free frame

 Read the desired page into the selected frame

 Update the page and frame tables, and restart the user

process

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 First In First Out (FIFO) Implementation

1. Each page is given a time stamp when it is brought into

memory

2. Select the oldest page for replacement

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

reference

string

page

frames

FIFO

queue

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

3

1

4

3

0

2

3

0

4

2

0

4

2

3

0

2

3

7 7

0

7

0

1

0

1

2

1

2

3

2

3

0

3

0

4

0

4

2

4

2

3

2

3

0

0

1

3

0

1

2

7

1

2

7

0

2

3

0

1

0

1

2

1

2

7

2

7

0

7

0

1

7

0

1

 Optimality
◦ One with the lowest page fault rate

 Replace the page that will not be used for the longest period
of time ➔ It needs future prediction

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

reference

string

page

frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

2

0

1

7

0

1

next 7
next 0

next 1

 Least-Recently-Used Algorithm (LRU)
◦ We don’t have knowledge about the future

◦ Thus, we use the history of page referencing in the past to
predict the future

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

reference

string

page

frames

LRU

queue

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

7 0

7

1

0

7

2

1

0

3

0

2

0

3

2

4

0

3

2

4

0

3

2

4

0

3

2

1

3

2

1

0

2

1

0

7

1

2

3

2

1

3

1

0

2

7

1

0

0

7

1

0

2

1

3

0

2

2

3

0

0

2

1

1

0

7

➔ However, it is too expensive to update the time stamp for each memory access!

 Second-Chance
Algorithm
◦ When a page is selected

 Take it as a victim if its
reference bit = 0

 Otherwise, clear the bit and
advance to the next page

 Basic Data Structure
◦ Use a reference bit for each

page in memory

◦ Define a circular FIFO
queue of pages

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

0

1

1

1

1

0
…

Reference

Bit

Page

…

0

0

0

1

1

0

…
Reference

Bit

Page

…

 Considering the reference bit and the modify bit as an ordered

pair

◦ (0, 0) neither recently used nor modified – best page to replace

◦ (0, 1) not recently used but modified – the page will need to be

written out before replacement

◦ (1, 0) recently used but clean – probably will be used again soon

◦ (1, 1) recently used and modified - probably will be used again

soon, and the page will need to be written out to disk before it can

be replaced

 We replace the first page encountered in the lowest nonempty

class

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Low

Priority

High

Priority

 Motivation:

◦ Count the number of references made to each page, instead of their

referencing times

 Least Frequently Used Algorithm (LFU)

◦ LFU pages are less actively used pages

◦ Hazard: Some heavily used pages may no longer be used

 A Solution – Aging

◦ Pages with the smallest number of references are probably just

brought in and has yet to be used

 Most Frequently Used Algorithm (MFU)

 LFU & MFU replacement schemes can be fairly expensive

 They do not approximate OPT very well

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Basic Idea: to reduce the latency for writing victims out

◦ Systems keep a pool of free frames

◦ Desired pages are first “swapped in” some frames in the pool

◦ When the selected page (victim) is later written out, its frame

is returned to the pool

 Basic Approach

◦ Maintain a list of modified pages

◦ Whenever the paging device is idle, a modified page is written

out and reset its “modify bit”

◦ The clean pages can be included in the pool

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Each process needs minimum number of frames

 Example: IBM 370 – 6 pages to handle SS MOVE
instruction:
◦ instruction is 6 bytes, might span 2 pages

◦ 2 pages to handle from

◦ 2 pages to handle to

 Maximum of course is total frames in the system

 Fixed allocation
◦ Use a formula to derive the number of required frames for each

application

 Dynamic allocation
◦ Measure some behavior, e.g. page fault rated, to know the needs of

applications

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Global Allocation
◦ Processes can take frames from others

◦ For example, high-priority processes can increase its frame
allocation at the expense of the low-priority processes

 Local Allocation
◦ Processes can only select frames from their own allocated

frames

◦ The set of pages in memory for a process is affected by the
paging behavior of only that process

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Many systems are NUMA – speed of access to memory

varies

◦ Consider system boards containing CPUs and memory,

interconnected over a system bus

 Optimal performance comes from allocating memory

“close to” the CPU on which the thread is scheduled

◦ Modifying the scheduler to schedule the thread on the same

CPU when possible

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 If a process does not have “enough” memory frames,

the page-fault rate is very high

◦ Page fault to get pages into memory frames

◦ Replace existing pages in frames

◦ But soon need to get the replaced pages back

◦ This leads to:

 Low CPU utilization

 Operating system is then thinking that it needs to increase the

degree of multiprogramming

 Another processes are added to the system

 More page faults

 Thrashing → Process is busy swapping pages in and out

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Be careful of the page fault rate

 Establish “acceptable” page-fault frequency rate and use local

replacement policy

◦ Control thrashing directly through the observation on the page-fault rate

◦ If actual rate too low, process loses frame

◦ If actual rate too high, process gains frame

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 △≡ a working-set window ≡ a fixed number of page

references

◦ Example: 10,000 instructions

 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent △
◦ if △ is too small: will not encompass entire locality

◦ if △ is too large: will encompass several localities

◦ if △ = ∞: will encompass entire program

 D = Σ WSSi ≡ total demand frames

◦ Approximation of locality

 if D > the number of frames→ Thrashing

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Memory-mapped file I/O allows file I/O to be treated
as routine memory access by mapping a disk block to a
page in memory
◦ But when does written data make it to disk?

◦ Periodically and/or at file close() time

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Processor can have direct access

 Memory-Mapped I/O
(1) Frequently used devices

(2) Devices must be fast, such as video controller, or special I/O
instructions are used to move data between memory &
device controller registers

 Programmed I/O – polling
◦ or interrupt-driven handling

35
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The Buddy System

◦ A fixed-size segment of

physically contiguous

pages

◦ A power-of-2 allocator

◦ Advantage: quick

coalescing algorithms

◦ Disadvantage: internal

fragmentation

36
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

256KB

128KB 128KB

64KB 64KB

32KB 32KB

 Slab Allocation

◦ Slab: one or more physically contiguous pages

◦ Cache: one or more slabs with the same size

37
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Pre-Paging

◦ Bring into memory at one time all the pages that will be

needed!

 Issue

38
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Pre-Paging Cost Cost of Page Fault Services

ready

processes

suspended

processesresumed

swapped

out

Do pre-paging if the working set is known!

Not every page in the working set will be used!

 Page Size

◦ Trends: Large Page Size

∵ The CPU speed and the memory capacity grow much faster

than the disk speed!

39
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

small largep d

Smaller Page

Table Size &

Better I/O

Efficiency

Better

Resolution

for Locality &

Internal

Fragmentation
212 (4KB) to 222 (4MB)

Page Size

 TLB Reach - The amount of memory accessible from

the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the

TLB

◦ Otherwise there is a high degree of page faults

 Increase the Page Size

◦ This may lead to an increase in fragmentation as not all

applications require a large page size

40
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Program Structures:
◦ int data [1024][1024];

◦ Each row is stored in one page
◦ Program 1

for (j = 0; j <1024; j++)

for (i = 0; i < 1024; i++)
data[i][j] = 0;

1024 x 1024 page faults

◦ Program 2
for (i = 0; i < 1024; i++)

for (j = 0; j < 1024; j++)
data[i][j] = 0;

1024 page faults

41
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 I/O Interlock – Pages must sometimes be locked into

memory

 Consider I/O - Pages that are used for copying a file

from a device must be locked from being selected for

eviction by a page replacement algorithm

42
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

43
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling
6. Synchronization
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems
12. Secondary-Storage Systems

 Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within file

system
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing
 Time, date, and user identification – data for protection,

security, and usage monitoring
 Information about files are kept in the directory structure,

which is maintained on the disk
 Many variations, including extended file attributes such as file

checksum

45
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 File is an abstract data type

 Create

 Write – at write pointer location

 Read – at read pointer location

 Reposition within file - seek

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for
entry Fi, and move the content of entry to memory

 Close (Fi) – move the content of entry Fi in memory
to directory structure on disk

46
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Microsoft Windows File Systems
◦ FAT

◦ NTFS

◦ exFAT

 Linux File Systems
◦ ext2

◦ ext3

◦ ext4

◦ JFFS → for Flash devices

 Network File Systems
◦ NFS

◦ Samba

47
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

48
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

File-System Interface

VFS Interface

Local File System

Type 2 (e.g. ext4)

Local File System

Type 1 (e.g. NTFS)

Remote File System

Type 1 (e.g. NFS)

Disk with

Windows 8.1
Disk with

Linux
Network

 Virtual File Systems (VFS) on provide an object-oriented way

of implementing file systems

 VFS allows the same system call interface (the API) to be used

for different types of file systems

◦ Separates file-system generic operations from implementation details

◦ Implementation can be one of many file systems types, or network file

system

◦ Then dispatches operation to appropriate file system implementation

routines

 The API is to the VFS interface, rather than any specific type

of file system

49
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

51
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

The size of a sector is

from 512B to 4KB

 The disk I/O request specifies several pieces of
information:
◦ Whether this operation is input or output

◦ What the disk address for the transfer is

◦ What the memory address for the transfer is

◦ What the number of sectors to be transferred is

 When there are multiple request pending, a good disk
scheduling algorithm is required
◦ Fairness: which request is the most urgent one

◦ Performance: sequential access is preferred

52
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1 2 3 4 5 6 7

Resort the requests?
5 7 2 6 4 1 3

Cylinders

Requests

 Access Latency = Average access time = average seek

time + average rotation latency

◦ For fastest disk 3ms + 2ms = 5ms

◦ For slow disk 9ms + 5.56ms = 14.56ms

 Average I/O time = average access time + (amount to

transfer / transfer rate) + controller overhead

53
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Principle of Least Privilege

◦ Programs, users and systems should be given just enough

privileges to perform their tasks

◦ Limits damage if entity has a bug or gets abused

 Principle of Need-to-Know

◦ At any time, a process should be able to access only those

resources that it currently requires to complete its task

55
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Breach of confidentiality

◦ Unauthorized reading of data

 Breach of integrity

◦ Unauthorized modification of data

 Breach of availability

◦ Unauthorized destruction of data

 Theft of service

◦ Unauthorized use of resources

 Denial of service (DOS)

◦ Prevention of legitimate use

56
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

57
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

58
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

