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 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-

replacement algorithms, and allocation of page frames

 To discuss the principle of the working-set model
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 Virtual Memory

◦ A technique that allows the execution of a process that may not 

be completely in memory

 Motivation

◦ An entire program in execution may not all be needed at the 

same time

 Error handling routines

 A large array
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 Potential Benefits
◦ Programs can be much larger than the amount of physical 

memory 

 Users can concentrate on their problem programming

◦ The level of multiprogramming increases because processes 
occupy less physical memory

◦ Each user program may run faster because less I/O is needed 
for loading or swapping user programs

 Implementation: demand paging
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 Process image may reside on the backing store

◦ Rather than swap in the entire process image into memory 

Lazy Swapper only swaps in a page when it is needed

 A mechanism is required to recover from the missing of 

non-resident referenced pages

◦ A Page Fault occurs when a process references a non-memory-

resident page
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 New bits in the page table

◦ To indicate that a page is now in memory or not

 Secondary storage management

◦ Swap space in the backing store 

 A continuous section of space in the secondary storage for better 

performance
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 Copy-on-Write (COW) allows both parent and child 

processes to initially share the same pages in memory

◦ If either process modifies a shared page, then the page is 

copied

 COW allows more efficient process creation as only 

modified pages are copied

 In general, free pages are allocated from a pool of 

zero-fill-on-demand pages
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 Page Fault Rate 0 ≤ p ≤ 1

◦ if p = 0 no page faults

◦ if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT =  (1 – p) x memory-access time

+ p ( page fault overhead 

+ swap page out

+ swap page in

+ restart overhead )
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 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p)  x 200 + p x 8,000,000 

= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then    

EAT = 8.2 microseconds!

 If we want performance degradation < 10 percent

◦ 220 > 200 + 7,999,800 x p

◦ p < 0.0000025
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 Preload processes into the swap space before they start 

up

 Preload pages into the main memory before the pages 

are used

 Design a good page replacement algorithm
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 Frame Allocation Algorithms

◦ How many frames are allocated to a process?

 Page Replacement Algorithms

◦ When page replacement is required, select the 
frame that is to be replaced!

 Goal: A low page fault rate!
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 Demand paging increases the multiprogramming level 
of a system by “potentially” over-allocating memory
◦ Total physical memory = 40 frames

◦ Run six processes of size equal to 10 frames 

◦ Each process currently uses only 5 frames 

➔ 10 spare frames

 Most of the time, the average memory usage is close to 
the physical memory size if we increase a system’s 
multiprogramming level
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 Find the desired page on the disk

 Find a free frame

◦ Select a victim and write the victim page out when there is no 

free frame

 Read the desired page into the selected frame

 Update the page and frame tables, and restart the user 

process
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 First In First Out (FIFO) Implementation

1. Each page is given a time stamp when it is brought into 

memory

2. Select the oldest page for replacement
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 Optimality
◦ One with the lowest page fault rate

 Replace the page that will not be used for the longest period 
of time ➔ It needs future prediction
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 Least-Recently-Used Algorithm (LRU)
◦ We don’t have knowledge about the future

◦ Thus, we use the history of page referencing in the past to 
predict the future
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➔ However, it is too expensive to update the time stamp for each memory access!



 Second-Chance 
Algorithm
◦ When a page is selected

 Take it as a victim if its 
reference bit = 0

 Otherwise, clear the bit and 
advance to the next page

 Basic Data Structure 
◦ Use a reference bit for each 

page in memory

◦ Define a circular FIFO 
queue of pages
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 Considering the reference bit and the modify bit as an ordered 

pair

◦ (0, 0) neither recently used nor modified – best page to replace

◦ (0, 1) not recently used but modified – the page will need to be 

written out before replacement

◦ (1, 0) recently used but clean – probably will be used again soon

◦ (1, 1) recently used and modified - probably will be used again 

soon, and the page will need to be written out to disk before it can 

be replaced

 We replace the first page encountered in the lowest nonempty 

class
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 Motivation:

◦ Count the number of references made to each page, instead of their 

referencing times

 Least Frequently Used Algorithm (LFU) 

◦ LFU pages are less actively used pages

◦ Hazard: Some heavily used pages may no longer be used

 A Solution – Aging 

◦ Pages with the smallest number of references are probably just 

brought in and has yet to be used 

 Most Frequently Used Algorithm (MFU) 

 LFU & MFU replacement schemes can be fairly expensive

 They do not approximate OPT very well 
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 Basic Idea: to reduce the latency for writing victims out

◦ Systems keep a pool of free frames

◦ Desired pages are first “swapped in” some frames in the pool

◦ When the selected page (victim) is later written out, its frame 

is returned to the pool

 Basic Approach

◦ Maintain a list of modified pages

◦ Whenever the paging device is idle, a modified page is written 

out and reset its “modify bit”

◦ The clean pages can be included in the pool
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 Each process needs minimum number of frames

 Example:  IBM 370 – 6 pages to handle SS MOVE 
instruction:
◦ instruction is 6 bytes, might span 2 pages

◦ 2 pages to handle from

◦ 2 pages to handle to

 Maximum of course is total frames in the system

 Fixed allocation
◦ Use a formula to derive the number of required frames for each 

application

 Dynamic allocation
◦ Measure some behavior, e.g. page fault rated, to know the needs of 

applications
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 Global Allocation
◦ Processes can take frames from others 

◦ For example, high-priority processes can increase its frame 
allocation at the expense of the low-priority processes

 Local Allocation
◦ Processes can only select frames from their own allocated 

frames

◦ The set of pages in memory for a process is affected by the 
paging behavior of only that process
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 Many systems are NUMA – speed of access to memory 

varies

◦ Consider system boards containing CPUs and memory, 

interconnected over a system bus

 Optimal performance comes from allocating memory 

“close to” the CPU on which the thread is scheduled

◦ Modifying the scheduler to schedule the thread on the same 

CPU when possible
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 If a process does not have “enough” memory frames, 

the page-fault rate is very high

◦ Page fault to get pages into memory frames

◦ Replace existing pages in frames

◦ But soon need to get the replaced pages back

◦ This leads to:

 Low CPU utilization

 Operating system is then thinking that it needs to increase the 

degree of multiprogramming

 Another processes are added to the system

 More page faults

 Thrashing → Process is busy swapping pages in and out
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 Establish “acceptable” page-fault frequency rate and use local 

replacement policy

◦ Control thrashing directly through the observation on the page-fault rate

◦ If actual rate too low, process loses frame

◦ If actual rate too high, process gains frame
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 △≡ a working-set window ≡ a fixed number of page 

references

◦ Example:  10,000 instructions

 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent △
◦ if △ is too small: will not encompass entire locality

◦ if △ is too large: will encompass several localities

◦ if △ = ∞: will encompass entire program

 D =  Σ WSSi ≡ total demand frames 

◦ Approximation of locality

 if D > the number of frames→ Thrashing
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 Memory-mapped file I/O allows file I/O to be treated 
as routine memory access by mapping a disk block to a 
page in memory
◦ But when does written data make it to disk?

◦ Periodically and/or at file close() time
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 Processor can have direct access

 Memory-Mapped I/O 
(1) Frequently used devices

(2) Devices must be fast, such as video controller, or special I/O 
instructions are used to move data between memory & 
device controller registers

 Programmed I/O – polling 
◦ or interrupt-driven handling 
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 The Buddy System

◦ A fixed-size segment of 

physically contiguous 

pages

◦ A power-of-2 allocator

◦ Advantage: quick 

coalescing algorithms

◦ Disadvantage: internal 

fragmentation
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 Slab Allocation

◦ Slab: one or more physically contiguous pages

◦ Cache: one or more slabs with the same size
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 Pre-Paging

◦ Bring into memory at one time all the pages that will be 

needed! 

 Issue
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Do pre-paging if the working set is known!

Not every page in the working set will be used!



 Page Size

◦ Trends: Large Page Size 

∵ The CPU speed and the memory capacity grow much faster 

than the disk speed!
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 TLB Reach - The amount of memory accessible from 

the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the 

TLB

◦ Otherwise there is a high degree of page faults

 Increase the Page Size

◦ This may lead to an increase in fragmentation as not all 

applications require a large page size
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 Program Structures:
◦ int data [1024][1024];

◦ Each row is stored in one page 
◦ Program 1 

for (j = 0; j <1024; j++)

for (i = 0; i < 1024; i++)
data[i][j] = 0;

1024  x 1024  page faults 

◦ Program 2 
for (i = 0; i < 1024; i++)

for (j = 0; j < 1024; j++)
data[i][j] = 0;

1024 page faults
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 I/O Interlock – Pages must sometimes be locked into 

memory

 Consider I/O - Pages that are used for copying a file 

from a device must be locked from being selected for 

eviction by a page replacement algorithm
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 Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within file 

system
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing
 Time, date, and user identification – data for protection, 

security, and usage monitoring
 Information about files are kept in the directory structure, 

which is maintained on the disk
 Many variations, including extended file attributes such as file 

checksum
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 File is an abstract data type

 Create

 Write – at write pointer location

 Read – at read pointer location

 Reposition within file - seek

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for 
entry Fi, and move the content of entry to memory

 Close (Fi) – move the content of entry Fi in memory 
to directory structure on disk
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 Microsoft Windows File Systems
◦ FAT 

◦ NTFS

◦ exFAT

 Linux File Systems
◦ ext2 

◦ ext3 

◦ ext4

◦ JFFS → for Flash devices

 Network File Systems 
◦ NFS

◦ Samba
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 Virtual File Systems (VFS) on provide an object-oriented way 

of implementing file systems

 VFS allows the same system call interface (the API) to be used 

for different types of file systems

◦ Separates file-system generic operations from implementation details

◦ Implementation can be one of many file systems types, or network file 

system

◦ Then dispatches operation to appropriate file system implementation 

routines

 The API is to the VFS interface, rather than any specific type 

of file system
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from 512B to 4KB



 The disk I/O request specifies several pieces of 
information:
◦ Whether this operation is input or output

◦ What the disk address for the transfer is

◦ What the memory address for the transfer is

◦ What the number of sectors to be transferred is

 When there are multiple request pending, a good disk 
scheduling algorithm is required
◦ Fairness: which request is the most urgent one

◦ Performance: sequential access is preferred
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 Access Latency = Average access time = average seek 

time + average rotation latency

◦ For fastest disk 3ms + 2ms = 5ms

◦ For slow disk 9ms + 5.56ms = 14.56ms

 Average I/O time = average access time + (amount to 

transfer / transfer rate) + controller overhead
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 Principle of Least Privilege

◦ Programs, users and systems should be given just enough 

privileges to perform their tasks

◦ Limits damage if entity has a bug or gets abused

 Principle of Need-to-Know

◦ At any time, a process should be able to access only those 

resources that it currently requires to complete its task
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 Breach of confidentiality

◦ Unauthorized reading of data

 Breach of integrity

◦ Unauthorized modification of data

 Breach of availability

◦ Unauthorized destruction of data

 Theft of service

◦ Unauthorized use of resources

 Denial of service (DOS)

◦ Prevention of legitimate use
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