Operating System
Concepts

Che-Wel Chang
chewei@mail.cgu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Contents

1. Introduction
2. System Structures
3. Process Concept
4. Multithreaded Programming
5. Process Scheduling

mm) s Synchronization
7. Deadlocks
8. Memory-Management Strategies
9. Virtual-Memory Management
10. File System
11. Implementing File Systems
12. Secondary-Storage Systems

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Chapter 6.

Synchronization

Objectives

» To Introduce the critical-section problem, whose
solutions can be used to ensure the consistency of
shared data

» To present both software and hardware solutions of the
critical-section problem

» To examine several classical process-synchronization
problems

» To explore several tools that are used to solve process
synchronization problems

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

A Consumer-Producer Example

* Producer = Consumer:

while (1) { while (1) {
while (counter == BUFFER_SIZE) while (counter == 0)
produce an item in nextp; nextc = buffer[out];
in = (in+1) % BUFFER_SIZE; counter-;

_ consume an item in nextc;

counter++; }

}

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Race Condition

» One counter++ and one counter--

rl = counter r2 = counter
ri=rl1+1 r2=r2-1
counter =rl counter = r2

» Initially, let counter =5
P: rl = counter
P:rl=rl+1

C: r2 = counter

C:r2=r2—-1 > ARace Condition!
P: counter =rl
C:counter=r2=4

» Theresultcan be 4,5 or 6

SO 0Tk WP

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

6

Process Synchronization

» A Race Condition:;

o Asituation where the outcome of the execution depends on the
particular order of process scheduling

» The Critical-Section Problem:

- Design a protocol that processes can use to cooperate

- Each process has a segment of code, called a critical section, whose
execution must be mutually exclusive

A general structure for the critical-section design

do {

permission request =) entry section;
critical section;
exit notification =) exit section;
remainder section,;
} while (1);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Solution of the Critical Section
Problem

» Three Requirements
o Mutual Exclusion:
Only one process can be in its critical section
> Progress:

If no process is executing In its critical section and there
exist some processes that wish to enter their critical

section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

> Bounded Waiting:

A waiting process only waits for a bounded number of
processes to enter its critical section

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Peterson’s Solution (1/5)

» Notation
> Processes P; and P;

» Assumption

o Every basic machine-language
Instruction is atomic

» Algorithm 1

o |dea: Remember which process is
allowed to enter its critical
section. That is, P; can enter its
critical section if turn =i

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

do {

while (turn !=1) ;

critical section

turn=j;

remainder section
} while (1);

Peterson’s Solution (2/5)

» Algorithm 1 fails the progress requirement:

P. | | Piquits! Time

P | | . Time

j | B
exit
blocked on Py's
entry section

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Peterson’s Solution (3/5)

» Algorithm 2
o ldea: Remember the state
of each process
o flag[i]==true - P; Is ready
to enter its critical section

o Algorithm 2 fails the
progress requirement when
flag[i] == flag[j] == true

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineeri

Initially, flag[i]=flag[j]=false

do {
flag[i]=true;
while (flag(j]) ;

critical section
flag[i]=false;

remainder section
} while (1);

Peterson’s Solution (4/5)

» Algorithm 3

o |ldea: Combine the ideas of do{
Algorithms 1 and 2 flag[i]=true;
> When (fl_ag[i] && turn=i), P; turn=j;
must wait
> Initially, flag[i]=flag[j]=false, | While (flag[J] && turn==j) ;
and turn =1 or | critical section
flag[i]=false;
remainder section
} while (1);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Peterson’s Solution (5/5)

» Properties of Algorithm 3
o Mutual Exclusion

- The eventual value of turn determines which process enters the
critical section

> Progress

- Aprocess can only be stuck in the while loop, and the process
which can keep it waiting must be in its critical sections

> Bounded Waiting
- Each process wait at most one entry by the other process

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Peterson’s Solution (4/5)

Process P, HYf2 = HE: Process P; {2 =0A:

do { do {
flag[i]=true; flag[j]=true;
turn=j; turn=i;
while (flag[j] && turn==j) ; while (flag[i] && turn==i) ;
critical section critical section
flag[i]=false; flag[j]=false;
remainder section remainder section

} while (2); } while (1);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang (

Brainstorming!

» Could we move turn=i; and turn=j; as follows:

Process P;: Process P

do { do {
flag[i]=true; flag[j]=true;
while (flag[j] && turn==)) ; while (flag[i] && turn==i) ;
critical section critical section
turn=;j; turn=i;
flag[i]=false; flag[j]=false;
remainder section remainder section

} while (1); } while (1);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Cha

EEZZ2AR1T - &5 PetersonfEizth &
2893875 (Bl 5 8 -

» A (TR FlAeT o 4ok BT S R {F > Mutual

Exclusion:if i+ & it id &

o F % — A AN EE U Sge b B AL

° Pi% — S B A3 (T PP A AR (7 1B
o d b pEPR Iz 3 (7 o7 flag[i] s 5 false
- ATrPE T]2 o~ critical section

o fPi& » critical section#hiz L) BF f Pis 42 F B 4040 1
©d Aturnsge b @ A
-« Arra P ¥ e iE ~ critical section

° 3% PF i PifeP; ke BF fecritical sectionsz =i & Mutual
Exclusion

o ¥ g Peterson’s Solution#t ! enii2 (% - F)* € 3 & B K 32>

<~ RF Mp e EE

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Synchronization Hardware

» Motivation:
o Hardware features make programming easier and improve
system efficiency
» Approach:

> Disable Interrupt = No Preemption

- Infeasible in multiprocessor environments

- Potential impacts on interrupt-driven system clocks
o Atomic Hardware Instructions

- Test-and-set, Swap, etc.

© All Rights Reserved, Prof. Che-Wei Chang,

SRt 17

Department of Computer Science and Information Engi

Test and Set

boolean TestAndSet(boolean *target) {
boolean rv = *target;

Meaning . |
target=true;
return rv;
I S
do {
while (TestAndSet(&lock)) ;
Usage critical section

lock=false;

remainder section
} while (1);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Swap

void Swap(boolean *a, boolean *b) {
boolean temp = *a;

Meaning i
a: ’

do {

Key=true;
while (key == true)
Swap(&lock, &key);

Usage critical section

lock=false;

remainder section
} while (1);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Case Study of Test and Set

do {
» Problem waiting[i]=true;
N tasks want to access some share key=true;
data while (waiting[i] && key)
» Mutual Exclusion key=TestAndSet(&lock);
o Pass If key==F or waiting[i]== waiting[i]=false;
» Progress critical section
- EXit process sends a process in)= (+1) % n;
» Bounded Waiting while((j = 1) && (!waiting][j]))
> Wait at most n-1 times j=(+1) % n;

If (j=I) lock=false;
else waiting[j]=false;

remainder section
} while (1);

© All Rights Reserved, Prof. Che-Wei Chang,

=Bl ity 20

Department of Computer Science and Information Engi

Mutex Locks (1/2)

» Previous solutions are complicated and generally inaccessible
to application programmers

» OS designers build software tools to solve critical section
problem

» Product critical regions with it by first acquire () alock
then release () it
o Boolean variable indicating if lock is available or not

» Callsto acquire () and release () must be atomic
o Usually implemented via hardware atomic instructions

» But this solution requires busy waiting
o This lock therefore called a spinlock

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

== | Rir2% 21

Mutex Locks (2/2)

acquire () {
while (lavailable)

I ; /* busy wait */
Meaning . v
avallable = false;
}
release () {
available = true;
}
do {
acquire (lock) ;
Usage critical section

release (lock) ;
remainder section

} while (true);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Cha

Semaphores (1/3)

» Motivation:
> A high-level solution for more complex problems

» Semaphore
o Avariable S only accessible by two atomic operations:

wait(S) { [* P * signal(S) { /*V */
while (S <=0) ; S++:
S-- }

}

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Semaphores (2/3)

» Critical Sections » Precedence Enforcement
do { P1l:
wait(S); S1;
signal(S);
critical section
signal(S); PO
remainder section ‘é";it(s)?
} while (1); ’

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang

Semaphores (3/3)

» Implementation
o Spinlock: A Busy-Waiting Semaphore
- “while (S <= 0)” causes the wasting of CPU cycles!

- Advantage:

- When locks are held for a short time, spinlocks are useful since no
context switching is involved.

o Semaphores with Blocked-Waiting
- No busy waiting from the entry to the critical section!

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

Semaphores with Block Waiting

wait (semaphore *S) {
S—->value--;
1f (S->value < 0) {
add thilis process to S->1ist;
block () ;
typedef struct/{

int value;

struct process *list;

| semaphore; signal (semaphore *S) {

S->value++;

if (S->value <= 0) {
remove a process P from S->1list;

wakeup (P) ;

e i it R

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Deadlocks and Starvation

» Deadlock

o Aset of processes is in a deadlock state when every process in the
set is waiting for an event that can be caused only by another
process in the set

PO: wait(S); P1: wait(Q);
wait(Q); wait(S);
sign.z-:li(S); sigr;;I(Q);
signal(Q); signal(S);

» Starvation (or Indefinite Blocking)
° e.g., a LIFO (last-in, first-out) queue

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Classical Problems of
Synchronization

» Bounded-Buffer Problem
» Readers and Writers Problem
» Dining-Philosophers Problem

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Bounded-Buffer Problem (1/2)

Producer:
do {
empty is produce an item In nextp;
Initialized to n \
wait(empty); /* control buffer availability */

mutex is mem) Walt(mutex); /* mutual exclusion */
Initialized to 1

add nextp to buffer,;

_ signal(mutex);
fu_ll_ls_ mmsd) Signal(full); /* increase item counts */
Initialized to O : _
} while (1);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Bounded-Buffer Problem (2/2)

Consumer:
do {
wait(full); /* control buffer availability */
wait(mutex); /* mutual exclusion */

signal(mutex);
signal(empty); /* increase item counts */
consume nextp;

1 while (1);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Readers and Writers Problem (1/2)

» A data set Is shared among a number of concurrent
processes

- Readers only read the data set; they do not perform any
updates

o \Writers can both read and write
» Problem

> Allow multiple readers to read at the same time

> Only one single writer can access the shared data at the same
time

© All Rights Reserved, Prof. Che-Wei Chang,

=Pisy 3

Department of Computer Science and Information Eng

Readers and Writers Problem (2/2)

semaphore wrt, mutex; Reader:
(initialized to 1); ===) Wait(mutex);
Int readcount=0; readcount++;
If (readcount ==1)
Writer: —> wait(wrt);
mmmp \Wait(Wrt); signal(mutex);
...... ... reading...
writing is performed =D wait(mutex);
,,,,,, readcount--;
signal (wrt) If (readcount==0)
signal(wrt);
signal(mutex);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Che

Dining-Philosopher Problem (1/3)

» Each philosopher must pick up one chopstick beside
him/her at a time

» When two chopsticks are picked up, the philosopher
can eat

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engine

Dining-Philosophers Problem (2/3)

semaphore chopstick|[5];

do {
wait(chopstick[i]);
wait(chopstick[(i + 1) % 5]);
... eat...
signal(chopstick([i]);
signal(chopstick[(i+1) % 5]);
...think ...

} while (2);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang

Dining-Philosophers Problem (3/3)

» This algorithm could create a deadlock

» Several possible remedies to the deadlock problem:
> Allow at most four philosopher

> Allow a philosopher to pick up chopsticks only if both are
available

o Asymmetric solution

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engi

35

Problems with Semaphores

» Incorrect use of semaphore operations:
o signal (mutex) wait (mutex)
o walt (mutex) ... wait (mutex)
o Omitting of walit (mutex) or signal (mutex) (or both)

» Deadlock and starvation

=>» A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

=B it 3

Monitor (1/2)

» Components
> Mariables
- Monitor states
> Procedures

- Only access local variables or
formal parameters

entry queue

shared data

monitor monitor-name

{ e 2t
Y

. . operations
/] shared variable declarations

procedure P, (...) { ...} w
procedure P, (...) { }

Initialization code (...) { ... }

}

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Monitor (2/2)

» Condition Variables

o x.walit () —a process that invokes the operation is suspended
until x.signal ()

o X.signal () — resumes one of processes (if any) that invoked
x.wait ()

- If no x.wait () on the variable, then it has no effect on the variable

entry queue

shared data

queues associated with{ X
X, y conditions y >

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineer

Solution to Dining Philosophers

(1/2)

monitor DiningPhilosophers
{
enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (inti) {

state[i] = HUNGRY;

test(i);

iIf (state[i] = EATING) self [i].walit();
¥

void putdown (int i) {
state[i] = THINKING,;
/] test left and right neighbors
test((i +4) % 5);
test((i + 1) % 5);
h

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

void test (int1) {
if ((state[(i +4) % 5] '= EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] '= EATING)) {
state[i] = EATING ;
selffi].signal () ;

}

initialization_code() {
for (inti=0; i <5;i++)
state[i] = THINKING;

Solution to Dining Philosophers

(2/2)

» Each philosopher I invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup (1);
Eat
DiningPhilosophers.putdown (i);

» No deadlock, but starvation is possible

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enging

Monitor Implementation Using
Semaphores

» Semaphores
o mutex — to protect the monitor

o next — being initialized to zero, on which processes may suspend
themselves

* next-count

» For each external function F
wait(mutex);

body of F;
If (next-count > 0)

signal(next);
else signal(mutex);

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Monitor Implementation Using
Condition Variables

> For every condition x
- Asemaphore x-sem
- An integer variable x-count
- Implementation of x.wait() and x.signal :

= x.wait() = x.signal()
X-count++; iIf (x-count > 0)
if (next-count > 0) {
signal(next); next-count++;
else signal(x-sem);
signal(mutex); wait(next);
wait(x-sem); next-count--;
X-count--; }

* x.wait() and x.signal() are invoked within a monitor

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Resuming Processes within a
monitor

» How do we determine which of the suspended

processes should be resumed next ?
o FCFS ordering
o Conditional-wait construct x.wait(c);
> Monitor-scheduling algorithm
- Built-in
or
- User define

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enging

