Operating System
Concepts

Che-Wel Chang
chewei@mail.cgu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Contents

Introduction

System Structures

Process Concept
Multithreaded Programming
Process Scheduling
Synchronization

Deadlocks
Memory-Management Strategies
Virtual-Memory Management
File System

Implementing File Systems
Secondary-Storage Systems

© 00 N o gk~ DR

ol e
N O

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Chapter 7. Deadlocks

Objectives

» To develop a description of deadlocks, which prevent
sets of concurrent processes from completing their
tasks

» To present a number of different methods for
preventing or avoiding deadlocks in a computer system

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

lllustration of Deadlock

~ N
- —————

(a) Deadlock possible (b) Deadlock

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung Universi

'

-

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engine

Deadlocks

» A set of process Is In a deadlock state when every
process in the set is waiting for an event that can be
caused by only another process in the set

» System Model

o System consists of resources

> Resource types R, R,, .. ., R,
- e.g. CPU, memory space, I/O devices, ...
- Each resource type R; has W; instances

o Each process utilizes a resource as follows:
* request
©use
- release

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Deadlock Characterization

» Mutual exclusion: only one process at a time can use a
resource

» Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other

processes

» No preemption: a resource can be released only
voluntarily by the process holding it

» Circular wait: there exists a set {P,, P, ..., P} of
waiting processes such that each P; is waiting for a
resource that is held by P .1y9n)

=» Deadlock can arise if four conditions hold simultaneously

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Resource-Allocation Graph

» A set of vertices V and a set of edges E

» V Is partitioned into two types:

- P={P,, P,, ..., P}, the set consisting of all the processes in
the system

- R={Ry, R,, ..., R}, the set consisting of all resource types in
the system

» E has two types:
> Request edge : directed edge P; 2 R;
> Assignment edge : directed edge R; = P,

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Resource-Allocation Graph

» Process

O

» Resource Type with 4 instances
86

» P; requests an instance of R;

» P; s holding an instance of R;

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

A Resource Allocation Graph

R, R,

- o P, is holding an instance of R, }

DENCONY O
~
P, is holding an instance of R,
=
@
e

\
\./ and an instance of R, and requests
= an instance of R,

R,

R,

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

A Deadlock in a Resource
Allocation Graph

Deadlock]

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engineering, C

No Deadlock in a Cycle

The cycle will be broken
after P, Is finished

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

An Example of Deadlock

Code:
void transaction (Account from, Account to, double amount)
{
mutex lockl, lock2;
lockl = get lock(from);
lock2 = get lock(to);
acquire (lockl) ;
acquire (lock2) ;
withdraw (from, amount) ;
deposit (to, amount);
release (lock2) ;

release (lockl) ;

Hold Wait
Use:
transaction 1000) ;
transaction 4000) ;

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Methods for Handling Deadlocks

» Make sure that the system never has a deadlock
> Deadlock Prevention: Prevent the necessary conditions
> Deadlock Avoidance: Make sure that the system always stays
at a “safe” state
» Do recovery if the system is deadlocked
> Deadlock Detection
o Recovery

» Ignore the possibility of deadlock occurrences

o Restart the system manually if the system seems to be
deadlocked or stops functioning

> Note that the system may be frozen temporarily

© All Rights Reserved, Prof. Che-Wei Chang,

=it 4y 15

Department of Computer Science and Information

Deadlock Prevention

» Goal:
> Try to fail anyone of the necessary conditions

o The Necessary Conditions
o Mutual Exclusion
- Some resources, such as a printer, are intrinsically non-sharable
> Hold and Wait
> No Preemption
o Circular Wait

© All Rights Reserved, Prof. Che-Wei Chang,

- PR

R

Department of Computer Science and Information Enginee

Deadlock Prevention—
Hold and Wait

» Rules
o Acquire all needed resources before its execution
or
o Release allocated resources before request additional resources
» Disadvantage
o Low resource utilization
o Starvation

© All Rights Reserved, Prof. Che-Wei Chang,

=N KLz 17

R

Department of Computer Science and Information Enginee

Deadlock Prevention—

No Preemption

» Related protocols are only applied to resources whose states
can be saved and restored, e.g., CPU registers & memory
space, instead of printers or tape drives

» Example Ves
O
No
equested Yes

Preempt
those resources

Resources are
eld by “Waiting”
DIOCesses?

No

“Wait” and its
allocated resources
may be preempted

© All Rights Reserved, Prof. Che-Wei Chang, o ‘ f 4 A% 18

Department of Computer Science and Information Engi

Deadlock Prevention—
Circular Wait

» Rule

o Impose a total ordering of all resource types, and require that each
process reguests resources in an increasing order of enumeration

) Example The order is
not allowed
/* thread one runs in this function */ /* thread two runs/in this function */
void *do work one (void *param) void *do work twéd (void *param)

{ {
lock (&first mutex);

lock (&second mutex) ;

/** * Do some work */

unlock (&second mutex) ; unlock (&first mutex) ;
unlock (&first mutex) ; unlock (&second mutex) ;
exit (0) ; exit (0) ;

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Deadlock Avoidance

» Goal:

- Dynamically examines the resource-allocation state to ensure
that there can never be a circular-wait condition

> 1.e., keep the system at a safe state

> Require that the system has some additional information
> For each resource
- Count the allocated amount
- Log the available amount
o For each process
- Know the maximum demand of each resource
- Count the allocated amount of each resource

© All Rights Reserved, Prof. Che-Wei Chang, b ‘ : f #4820

Department of Computer Science and Information En

Safe State (1/2)

» If a system Is in safe state = no deadlocks
» If a system is in unsafe state = possibility of deadlock

» Avoidance = ensure that a system will never enter an
unsafe state

unsafe
deadlock

%

=Bllliitiy 21

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Safe State (2/2)

» System Is In a safe state If there exists a safe sequence
of all processes

» Asequence <P,, P, ..., P> Is safe If for each P;, the
resources that P; can still request can be satisfied by
currently available resources plus the resources held by
all the P;, with j <1

» That Is:

> When P; is finished, P; can obtain needed resources, execute,
return allocated resources, and terminate

- When P; terminates, P;,, can obtain its needed resources, and
SO on

© All Rights Reserved, Prof. Che-Wei Chang, ™ ' £ 45 9

Department of Computer Science and Information

Deadlock Avoidance

» Example: for only one type of resources

Max needs | Allocated Available
P, 10 5 3
P, 4 2
P, 9 2

» The existence of a safe sequence <P,, P,, P,>
» If P, got two more, the system state is unsafe

=»How to ensure that the system will always remain in a
safe state?

© All Rights Reserved, Prof. Che-Wei Chang,

fi B2 % 23

Department of Computer Science and Information Eng

Resource-Allocation Graph
Scheme (1/2)

» Claim edge P; 2 R; indicated that process P; may
request resource R;; represented by a dashed line

» Claim edge converts to request edge when a process
requests a resource

» Request edge converted to an assignment edge when
the resource is allocated to the process

» When a resource Is released by a process, assignment
edge reconverts to a claim edge

© All Rights Reserved, Prof. Che-Wei Chang,

a2 TR 2% 24

Department of Computer Science and Information

Resource-Allocation Graph
Scheme (2/2)

A
P, request R,

If the request is granted:
Unsafe State

R, Block the request:

S

k - Safe State

© All Rights Reserved, Prof. Che-Wei Chang,

E’g I
Department of Computer Science and Information Engineering, C

Banker’s Algorithm (1/3)

» Available [m]

o |f Available [i] =k, there are k instances of n: number of
resource type R; available processes
» Max [n,m] m: number of
resource types

o If Max [1,]] = k, process P; may request at most
k instances of resource type R;
» Allocation [n,m]

o If Allocation [i,J] = k, process P; is currently
allocated k instances of resource type R;

» Need [n,m]

o If Need [i,j] = k, process P; may need k more
Instances of resource type R,

=>Need [i,J]] = Max [i,j] — Allocation [i,j]

© All Rights Reserved, Prof. Che-Wei Chang,

: ’:r:;;\:_:_ ' Lf i‘i % gﬁ 26

Department of Computer Science and Information Engi

Banker’s Algorithm (2/3)
—Safe State Checking

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:

Work][i] € Available[i] fori= 0,1, ..., m-1, which means the current available
instances of each resource

Finish[i] € false fori=0,1, ..., n- 1, which means if process P; is finished

2. Find a process P; such that both:
(a) Finish[i] == false

(b) Need[i] = Work @X= Yif X[k] = Y[K] for all k

If no such i exists, go to step 4

3. Work € Work + Allocation[i] = @x&x+Y means X[K]€X[k] +Y[K] for all k
Finish[i] € true

go to Step 2

4. If Finish [i] == true for all i, then the system is in a safe state; otherwise,
the system is unsafe

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Banker’s Algorithm (3/3)
—Resource-Request Algorithm

Request[i] is the request vector for process P;. If Request[i,j] =
k then process P; wants k instances of resource type R;

1. If Request[i] = Need[i], then goto Step 2; otherwise, Trap
2. If Request[i] = Available, then goto Step3; otherwise, P; must
wait
3. Have the system pretend to have allocated resources to process
P; by setting:
Available € Available — Request[i];
Allocation[i] € Allocation[i] + Request[i];
Need[i] € Need[i] — Request[i];
4. Execute “Safe State Checking”. If the system state is safe,

the request Is granted; otherwise, P; must walit, and the old
resource allocation state Is restored

© All Rights Reserved, Prof. Che-Wei Chang, ™ i 4

Department of Computer Science and Information

Deadlock Avoidance Example (1/2)

Allocation Max Need Available
A B C A B C A B C A B C
PO| O 1 0 7 5 3 7 4 3 3 3 2
PL| 2 0 0 3 2 2 1 2 2
P2 | 3 0 2 9 0 2 6 0 0
P3| 2 1 1 2 2 2 0 1 1
P4 | O 0 2 4 3 3 4 3 1

Is it In a safe state now?

Yes, a safe sequence is <P,,P3,P,,P,,P,>

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Deadlock Avoidance Demo

Allocation Max Need Available
A B C A B C A B C A B C
4 3 3 2
1 3) 3 2
I 4 3
7 4 5
/ 3) 5

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineeri

E At % 30

Deadlock Avoidance Example (2/2)

Allocation Max Need Available
A B C A B C A B C A B C
PO| O 1 0 7 5 3 7 4 3 3 3 2
P1L| 2 0 0 3 2 2 1 2 2
P2 | 3 0 2 9 0 2 6 0 0
P3| 2 1 1 2 2 2 0 1 1
P4 | O 0 2 4 3 3 4 3 1

Let P, make a request Request[1] = (1,0,2) Request[1] = Awvailable (i.e., (1,0,2) = (3,3,2))
Should we grant it? Yes, there is still a safe sequence <P,,P,P,,P,,P,>

If Request[4] = (3,3,0) is asked later, it must be rejected
If Request[0] = (0,2,0) is asked later, it must be rejected because it results in an unsafe state

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Deadlock Detection

» Approach:
> Allow system to enter deadlock state

» Thus, we need:

o Detection algorithm
> Recovery scheme

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Single Instance of Each Resource
Type (1/2)

» Maintain wait-for graph
> Nodes are processes
° P> P; If P;is waiting for P,

» Periodically invoke an algorithm that searches for a

cycle in the graph
o |If there is a cycle, there exists a deadlock

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

Single Instance of Each Resource
Type (2/2)

RQ R5
(a) (b)
Resource-Allocation Graph Corresponding wait-for graph

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Multiple Instances of Each
Resource Type (1/2)

Nn. number of processes, m. number of resource types

» Data Structures

o Avalilable[1..m]: number of available resource instances

o Allocation[1..n, 1..m]: current resource allocation to each
process

> Request[1..n, 1..m]: the current request of each process

o If Request[l,]] =k, P; I1s now requesting k more instances of
resource type R;

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Multiple Instances of Each
Resource Type (2/2)

1. Work[1..m] € Available[1..m]
Finish[1..n] € False

2. Find a process P, such that both
a. Finish[i] = False
b. Request[i] = Work
If no such i, goto Step 4

3. Work € Work + Allocation]i]
Finish[i] := True
goto Step 2

4. If Finish[i] = False for some P;, then the system is in a deadlock state
If Finish[i] = False, then process P, is deadlocked

© All Rights Reserved, Prof. Che-Wei Chang,

=SBt 3

Department of Computer Science and Information Engi

Deadlock Detection Example

Allocation Request Available
A B C A B C A B C
PO| O 1 0 0 0 0 0 2 0
P1L| 2 0 0 2 0 2
P2 | 3 0 3 0 0 0
P3| 2 1 1 1 0 0
P4 | O 0 2 0 0 2

» Find a sequence <P0, P2, P3, P1, P4> such that Finish[i]

= True for all i
» If Request[2] = (0,0,1) is issued, then P1, P2, P3, and
P4 are deadlocked

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Deadlock Detection Demo

Allocation Request Available
A | B|C|A|B|C A | B | C
0 2 0
0 3 0
3 3 3
5 4 4
7 4 4

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Detection-Algorithm Usage

» When, and how often, to invoke depends on:

- How often a deadlock is likely to occur?
- How many processes will need to be rolled back?
- one for each disjoint cycle

» If detection algorithm is invoked arbitrarily, there may
be many cycles In the resource graph and so we would
not be able to tell which of the deadlocked processes

“caused” the deadlock

© All Rights Reserved, Prof. Che-Wei Chang, ™ ' £ 49 g

Department of Computer Science and Information

Recovery from Deadlock:
Process Termination

» Abort all deadlocked processes

» Abort one process at a time until the deadlock cycle is
eliminated

» In which order should we choose to abort?
1. Priority of the process

2. How long process has computed, and how much longer to
completion

Resources the process has used

Resources process needs to complete

How many processes will need to be terminated
Is process interactive or batch?

S O B W

© All Rights Reserved, Prof. Che-Wei Chang, b ' ' f #2840

Department of Computer Science and Information

Recovery from Deadlock:
Resource Preemption

» Selecting a victim — minimize cost

» Rollback — return to some safe state, restart process for
that state

» Starvation — same process may always be picked as
victim, include number of rollback in cost factor

© All Rights Reserved, Prof. Che-Wei Chang,

5
, 2.
EE = Lgf #‘. % ﬁ 41
A &

Department of Computer Science and Information Eng

