Operating System Practice

Che-Wel Chang
chewei@mail.cgu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Advanced Operating System
Concepts

oC
—>eC
o C
oC
oC
o C

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

a
a
a
Na
a

a

oter 10: File System

oter 11: Implementing File-Systems
oter 12: Mass-Storage Structure
oter 13: 1/0O Systems

nter 14: System Protection

nter 15: System Security

Study Items

» File-System Structure

» File-System Implementation
» Directory Implementation
Allocation Methods
Free-Space Management
Efficiency and Performance
» Recovery

» NFS

v v Vv

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

File System Layers

application programs

» Logical File System: manage metadata

Information
o Translate file name into file number and file 4
handler by maintaining file control blocks logical file system

o Directory management &

) .Pmtecuon. :] file-organization module
» File-Organization Module: understand files, "

logical address, and physical blocks \ 4
> Translate logical block number to physical block basic file system
number @
o Manage free space, disk allocation
- g - I/O control
» Basic File System: translate generic
commands for device drivers Jl
» 1/O Control: translate commands into devices

hardware instructions

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Virtual File System

file-system interface

Y

Provide unified interface for users
to use heterogeneous file systems

VFS interface

h 4 Y

h 4

local file system local file system

type 1 type 2

remote file system
type 1

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engineering, C

File-System Implementation

» Boot control block contains info needed by system to boot
OS from that volume
> Needed if volume contains OS, usually first block of volume

» Volume control block (superblock, master file table)

contains volume details
o Total number of blocks, number of free blocks, block size, free block
pointers or array

» Directory structure organizes the files
o Names and i-node numbers, master file table
» Per-file File Control Block (FCB) contains many details

about the file

o |-node number, permissions, size, dates
o NFTS stores into in master file table using relational DB structures

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

ACL.: Access Control List
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

In-Memory File System Structures

directory structure
open (file name) >
directory structure

file-control block

user space kernel memory secondary storage
(a)
index
/
r L data blocks
—
read (index) : T ———
per-process system-wide file-control block

open-file table open-file table

user space kernel memory secondary storage

(b)

© All Rights Reserved, Prof. Che-Wei Chang, 8

Department of Computer Science and Information Engineering, C

Directory Implementation

» Linear List: file names with pointers to the data blocks
> Simple to program
> Time-consuming to execute
- Linear search time

- Could keep ordered alphabetically via linked list or use tree
structure

» Hash Table: linear list with hash data structure
> Decreases directory search time

o Collisions — situations where two file names hash to the same
location

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

Allocation Methods

» Contiguous Allocation — each file occupies set of
contiguous blocks

» Linked Allocation — each file a linked list of blocks

» Indexed Allocation — each file has its own index
block(s) of pointers to its data blocks

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Contiguous Allocation Scheme

< directory
count file start length
o] 1] 2[] 3[] count O 2
i tr 14 3
4Ll sL1el] 7L mail 19 6
8] o[1o]11[] list 28 4
tr f 6 2
12[]13[J14[J15[]
16117118119
mail
20[]21[J22[]23[]
24[25 126 127[]
list
28[]29[130 131[]

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Contiguous Allocation

» Best performance in most cases

» Simple — only starting location (block number) and
length (number of blocks) are required

» Problems include finding space for file, knowing file
size, external fragmentation, need for compaction

» Extent-based file systems allocate disk blocks in

extents
o Extents are allocated for extra space of file allocation
o A file consists of one or more extents

© All Rights Reserved, Prof. Che-Wei Chang, Tm £ : £ gAY 10

Department of Computer Science and Informatio

Linked Allocation Scheme

< directory
¥_-—/ file start end
jeep 9 25
o P12 N3l |

8[] p[1l1o[2]11[]
12314 15[]
{7[]18[]19[]
20[_]21[_Je2[]23[]
24[]25[126[]27[]

28[29[J30[|31[]
¥/

© All Rights Reserved, Prof. Che-Wei Chang,

16

Department of Computer Science and Information Engineering, C

Linked Allocation

» Allocation Method
> Each block contains pointer to next block
o Each file ends at a nil pointer
> No external fragmentation
> No compaction
> Free space management system called when new block needed

o Improve efficiency by clustering blocks into groups but increases
internal fragmentation

o Reliability can be a problem
o Locating a block can take many 1/O operations and disk seeks

» FAT (File Allocation Table) Variation
> Beginning of volume has table, indexed by block number
> Much like a linked list, but faster on disk and cacheable
> New block allocation simple

© All Rights Reserved, Prof. Che-Wei Chang,

= £t 49 14

Department of Computer Science and Informatio

File-Allocation Table (1/2)

directory entry

| test | eee [217 |—
name start block

— 217 618

339 «—

618 339 le— |

no. of disk blocks -1

FAT

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang

File-Allocation Table (2/2)

. . . #31E SDXC (E) X
» File Allocation Table (FAT) is a compt ..,
architecture . v
» There are FAT12, FAT16, FAT32, anf TG -
EEEENANMA)
- I 128 KB v
AT Table 441 | === | File 1 (2/4) —
Directory Entry > 1 s | File 1 (1/4) ‘WE%M
Filel 3 — 6 v, | wmmm) | File1(3/4))
REHEFEQ
EOF | mmmm) | File 1 (4/4)
B0

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Indexed Allocation Scheme

. directory

\—// file index block
o] 11 2[] 3] e 19
4[] 5[] 701

8[] o J1ol\11[]
12[]18[]14
1614z _118[]
20 J21[J22[A23[]
24 125[[26[127[]

28 J29[J30[131[]
N

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Indexed Allocation

» Need index table
» Good at random access

» Dynamic access without external fragmentation, but
have overhead of index block

» If more than one index block iIs required
o Linked scheme
o Multilevel index
o Combined scheme

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Combined Scheme: UNIX UFS

mode

owners (2)

timestamps (3)

—» data

size block count

—» data

» data
direct blocks -
* —> data
+T—> data —,
single indirect ——>| o : > data
- *—» data = 5
double indirect i =—»{ data
triple indirect b > > data
- data

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Free Space Management— Bit Map

» Bit map requires extra space
o Example:

block size = 4KB = 2! bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 hits (32 MB)

If clusters of 4 blocks -> 8 MB of memory

» Easy to get contiguous files

0O 1 2 n-1 (

1 - block]i] free
0 -> block]i] occupied

bit[i] =<

© All Rights Reserved, Prof. Che-Wei Chang, o : ‘ =

Department of Computer Science and Information En

Free Space Management—
Linked List

[Cannot get contiguous space easily

free-space list head

No waste of space

12 145155/4

20[121]227 123[|

24 |25[|26[|27

28 J2g[130[131[|
...

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineeri

Free Space Management Methods

» Grouping
o Modify linked list to store address of next n-1 free blocks in

first free block, plus a pointer to next block that contains free-
block-pointers (like this one)

» Counting

o Because space is frequently contiguously used and freed, with
contiguous-allocation allocation, extents, or clustering

- Keep address of first free block and count of following free blocks
- Free space list then has entries containing addresses and counts

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Efficiency and Performance

» Efficiency Considerations
o Disk allocation and directory algorithms
o Types of data kept in file’s directory entry
> Pre-allocation or as-needed allocation of metadata structures
o Fixed-size or varying-size data structures
» Performance Considerations
o Keeping data and metadata close together

Buffer cache — separate section of main memory for frequently used
blocks

Synchronous writes sometimes requested by apps or needed by OS
No buffering / caching — writes must hit disk before acknowledgement
Asynchronous writes more common, buffer-able, faster

Free-behind and read-ahead — techniques to optimize sequential access
Reads frequently slower than writes (for harddisk)

(¢]

(o]

o

(¢]

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informatic

W

Performance Issue

» Adding instructions to the execution path to save one
disk 1/O is reasonable

o Intel Core 17 Extreme Edition 990x at 3.46Ghz = 159,000
MIPS
- http://en.wikipedia.org/wiki/Instructions_per_second
o Typical disk drive at 250 I/O operations per second
-+ 159,000 MIPS / 250 = 630 million instructions during one disk 1/0
o Fast SSD drives provide 60,000 IOPS

-+ 159,000 MIPS /60,000 = 2.65 millions instructions during one
SSD 1/0

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

|/O With and Without a Unified
Buffer Cache

I/0O using

memory-mapped 1/O read() and write()

A) I/O using
memory-mapped I/O read() and write()

AN N/

buffer cache

buffer cache

| |

file system

file system

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Recovery Issue

» Consistency checking compares data in directory
structure with data blocks on disk and tries to fix
Inconsistencies

» System programs have to back up data from disk to
another storage device (magnetic tape, other magnetic
disk, optical)

» Log structured (or journaling) file systems record each
metadata update to the file system as a transaction

o |If the file system crashes, all remaining transactions in the log
must still be performed

o Faster recovery from crash, removes chance of inconsistency
of metadata

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informa

Schematic View of NFS

client

server

system-calls interface

!

VFS interface

/

VFS interface

l

—

|

|

network

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

y A 4
other types of UNIX file NFS NFS UNIX file
file systems system client server system
y I
RPC/XDR RPC/XDR

-

4)

NFS: Network
File System

RPC: Remote
Procedure Call

XDR: External
Data
Representation

Three Layers of NFS Architecture

» UNIX file-system interface (based on the open, read,
write, and close calls, and file descriptors)

» Virtual File System (VFS) layer — distinguishes local
files from remote ones, and local files are further
distinguished according to their file-system types

> The VFS activates file-system-specific operations to handle
local requests according to their file-system types

o Calls the NFS protocol procedures for remote requests

» NFS service layer — bottom layer of the architecture
> Implements the NFS protocol

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informat

