
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Chapter 10: File System

Chapter 11: Implementing File-Systems

Chapter 12: Mass-Storage Structure

Chapter 13: I/O Systems

Chapter 14: System Protection

Chapter 15: System Security

2
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 NFS

3
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Logical File System: manage metadata
information
◦ Translate file name into file number and file

handler by maintaining file control blocks
◦ Directory management
◦ Protection

 File-Organization Module: understand files,
logical address, and physical blocks
◦ Translate logical block number to physical block

number
◦ Manage free space, disk allocation

 Basic File System: translate generic
commands for device drivers

 I/O Control: translate commands into
hardware instructions

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Provide unified interface for users

to use heterogeneous file systems

 Boot control block contains info needed by system to boot
OS from that volume
◦ Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table)
contains volume details
◦ Total number of blocks, number of free blocks, block size, free block

pointers or array

 Directory structure organizes the files
◦ Names and i-node numbers, master file table

 Per-file File Control Block (FCB) contains many details
about the file
◦ i-node number, permissions, size, dates

◦ NFTS stores into in master file table using relational DB structures

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

ACL: Access Control List

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Linear List: file names with pointers to the data blocks

◦ Simple to program

◦ Time-consuming to execute

 Linear search time

 Could keep ordered alphabetically via linked list or use tree

structure

 Hash Table: linear list with hash data structure

◦ Decreases directory search time

◦ Collisions – situations where two file names hash to the same

location

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Contiguous Allocation – each file occupies set of

contiguous blocks

 Linked Allocation – each file a linked list of blocks

 Indexed Allocation – each file has its own index

block(s) of pointers to its data blocks

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Best performance in most cases

 Simple – only starting location (block number) and

length (number of blocks) are required

 Problems include finding space for file, knowing file

size, external fragmentation, need for compaction

 Extent-based file systems allocate disk blocks in

extents

◦ Extents are allocated for extra space of file allocation

◦ A file consists of one or more extents

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Allocation Method
◦ Each block contains pointer to next block

◦ Each file ends at a nil pointer

◦ No external fragmentation

◦ No compaction

◦ Free space management system called when new block needed

◦ Improve efficiency by clustering blocks into groups but increases
internal fragmentation

◦ Reliability can be a problem

◦ Locating a block can take many I/O operations and disk seeks

 FAT (File Allocation Table) Variation
◦ Beginning of volume has table, indexed by block number

◦ Much like a linked list, but faster on disk and cacheable

◦ New block allocation simple

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 File Allocation Table (FAT) is a computer file system

architecture

 There are FAT12, FAT16, FAT32, and EXFAT

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

FAT Table
4

1

6

EOF

File 1 (2/4)

File 1 (1/4)

File 1 (3/4)

File 1 (4/4)

Directory Entry A Cluster with

Multiple Sectors

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Need index table

 Good at random access

 Dynamic access without external fragmentation, but
have overhead of index block

 If more than one index block is required
◦ Linked scheme

◦ Multilevel index

◦ Combined scheme

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Bit map requires extra space
◦ Example:

block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (32 MB)
if clusters of 4 blocks -> 8 MB of memory

 Easy to get contiguous files

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Cannot get contiguous space easily

No waste of space

 Grouping
◦ Modify linked list to store address of next n-1 free blocks in

first free block, plus a pointer to next block that contains free-
block-pointers (like this one)

 Counting
◦ Because space is frequently contiguously used and freed, with

contiguous-allocation allocation, extents, or clustering

 Keep address of first free block and count of following free blocks

 Free space list then has entries containing addresses and counts

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Efficiency Considerations
◦ Disk allocation and directory algorithms

◦ Types of data kept in file’s directory entry

◦ Pre-allocation or as-needed allocation of metadata structures

◦ Fixed-size or varying-size data structures

 Performance Considerations
◦ Keeping data and metadata close together

◦ Buffer cache – separate section of main memory for frequently used
blocks

◦ Synchronous writes sometimes requested by apps or needed by OS

 No buffering / caching – writes must hit disk before acknowledgement

 Asynchronous writes more common, buffer-able, faster

◦ Free-behind and read-ahead – techniques to optimize sequential access

◦ Reads frequently slower than writes (for harddisk)

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Adding instructions to the execution path to save one

disk I/O is reasonable

◦ Intel Core i7 Extreme Edition 990x at 3.46Ghz = 159,000

MIPS

 http://en.wikipedia.org/wiki/Instructions_per_second

◦ Typical disk drive at 250 I/O operations per second

 159,000 MIPS / 250 = 630 million instructions during one disk I/O

◦ Fast SSD drives provide 60,000 IOPS

 159,000 MIPS / 60,000 = 2.65 millions instructions during one

SSD I/O

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Consistency checking compares data in directory
structure with data blocks on disk and tries to fix
inconsistencies

 System programs have to back up data from disk to
another storage device (magnetic tape, other magnetic
disk, optical)

 Log structured (or journaling) file systems record each
metadata update to the file system as a transaction
◦ If the file system crashes, all remaining transactions in the log

must still be performed

◦ Faster recovery from crash, removes chance of inconsistency
of metadata

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

NFS: Network

File System

RPC: Remote

Procedure Call

XDR: External

Data

Representation

 UNIX file-system interface (based on the open, read,

write, and close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local

files from remote ones, and local files are further

distinguished according to their file-system types

◦ The VFS activates file-system-specific operations to handle

local requests according to their file-system types

◦ Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture

◦ Implements the NFS protocol

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

