
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Chapter 10: File System

Chapter 11: Implementing File-Systems

Chapter 12: Mass-Storage Structure

Chapter 13: I/O Systems

Chapter 14: System Protection

Chapter 15: System Security

2
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 NFS

3
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Logical File System: manage metadata
information
◦ Translate file name into file number and file

handler by maintaining file control blocks
◦ Directory management
◦ Protection

 File-Organization Module: understand files,
logical address, and physical blocks
◦ Translate logical block number to physical block

number
◦ Manage free space, disk allocation

 Basic File System: translate generic
commands for device drivers

 I/O Control: translate commands into
hardware instructions

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Provide unified interface for users

to use heterogeneous file systems

 Boot control block contains info needed by system to boot
OS from that volume
◦ Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table)
contains volume details
◦ Total number of blocks, number of free blocks, block size, free block

pointers or array

 Directory structure organizes the files
◦ Names and i-node numbers, master file table

 Per-file File Control Block (FCB) contains many details
about the file
◦ i-node number, permissions, size, dates

◦ NFTS stores into in master file table using relational DB structures

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

ACL: Access Control List

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Linear List: file names with pointers to the data blocks

◦ Simple to program

◦ Time-consuming to execute

 Linear search time

 Could keep ordered alphabetically via linked list or use tree

structure

 Hash Table: linear list with hash data structure

◦ Decreases directory search time

◦ Collisions – situations where two file names hash to the same

location

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Contiguous Allocation – each file occupies set of

contiguous blocks

 Linked Allocation – each file a linked list of blocks

 Indexed Allocation – each file has its own index

block(s) of pointers to its data blocks

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Best performance in most cases

 Simple – only starting location (block number) and

length (number of blocks) are required

 Problems include finding space for file, knowing file

size, external fragmentation, need for compaction

 Extent-based file systems allocate disk blocks in

extents

◦ Extents are allocated for extra space of file allocation

◦ A file consists of one or more extents

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Allocation Method
◦ Each block contains pointer to next block

◦ Each file ends at a nil pointer

◦ No external fragmentation

◦ No compaction

◦ Free space management system called when new block needed

◦ Improve efficiency by clustering blocks into groups but increases
internal fragmentation

◦ Reliability can be a problem

◦ Locating a block can take many I/O operations and disk seeks

 FAT (File Allocation Table) Variation
◦ Beginning of volume has table, indexed by block number

◦ Much like a linked list, but faster on disk and cacheable

◦ New block allocation simple

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 File Allocation Table (FAT) is a computer file system

architecture

 There are FAT12, FAT16, FAT32, and EXFAT

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

FAT Table
4

1

6

EOF

File 1 (2/4)

File 1 (1/4)

File 1 (3/4)

File 1 (4/4)

Directory Entry A Cluster with

Multiple Sectors

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Need index table

 Good at random access

 Dynamic access without external fragmentation, but
have overhead of index block

 If more than one index block is required
◦ Linked scheme

◦ Multilevel index

◦ Combined scheme

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Bit map requires extra space
◦ Example:

block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (32 MB)
if clusters of 4 blocks -> 8 MB of memory

 Easy to get contiguous files

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

…

0 1 2 n-1

bit[i] =

 1 block[i] free

0 block[i] occupied

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Cannot get contiguous space easily

No waste of space

 Grouping
◦ Modify linked list to store address of next n-1 free blocks in

first free block, plus a pointer to next block that contains free-
block-pointers (like this one)

 Counting
◦ Because space is frequently contiguously used and freed, with

contiguous-allocation allocation, extents, or clustering

 Keep address of first free block and count of following free blocks

 Free space list then has entries containing addresses and counts

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Efficiency Considerations
◦ Disk allocation and directory algorithms

◦ Types of data kept in file’s directory entry

◦ Pre-allocation or as-needed allocation of metadata structures

◦ Fixed-size or varying-size data structures

 Performance Considerations
◦ Keeping data and metadata close together

◦ Buffer cache – separate section of main memory for frequently used
blocks

◦ Synchronous writes sometimes requested by apps or needed by OS

 No buffering / caching – writes must hit disk before acknowledgement

 Asynchronous writes more common, buffer-able, faster

◦ Free-behind and read-ahead – techniques to optimize sequential access

◦ Reads frequently slower than writes (for harddisk)

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Adding instructions to the execution path to save one

disk I/O is reasonable

◦ Intel Core i7 Extreme Edition 990x at 3.46Ghz = 159,000

MIPS

 http://en.wikipedia.org/wiki/Instructions_per_second

◦ Typical disk drive at 250 I/O operations per second

 159,000 MIPS / 250 = 630 million instructions during one disk I/O

◦ Fast SSD drives provide 60,000 IOPS

 159,000 MIPS / 60,000 = 2.65 millions instructions during one

SSD I/O

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Consistency checking compares data in directory
structure with data blocks on disk and tries to fix
inconsistencies

 System programs have to back up data from disk to
another storage device (magnetic tape, other magnetic
disk, optical)

 Log structured (or journaling) file systems record each
metadata update to the file system as a transaction
◦ If the file system crashes, all remaining transactions in the log

must still be performed

◦ Faster recovery from crash, removes chance of inconsistency
of metadata

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

NFS: Network

File System

RPC: Remote

Procedure Call

XDR: External

Data

Representation

 UNIX file-system interface (based on the open, read,

write, and close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local

files from remote ones, and local files are further

distinguished according to their file-system types

◦ The VFS activates file-system-specific operations to handle

local requests according to their file-system types

◦ Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture

◦ Implements the NFS protocol

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

