
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Chapter 10: File System

Chapter 11: Implementing File-Systems

Chapter 12: Mass-Storage Structure

Chapter 13: I/O Systems

Chapter 14: System Protection

Chapter 15: System Security

2
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 I/O Hardware

 Application I/O Interface

 Kernel I/O Subsystem

 Transforming I/O Requests to Hardware Operations

 Performance

3
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Incredible Variety of I/O Devices

◦ Storage

◦ Transmission

◦ Human-interface

 Common Concepts

◦ Port: connection point for device

◦ Bus: daisy chain or shared direct access

◦ Controller (host adapter): electronics that operate port, bus,

device

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Device registers which can be accessed by the host

◦ The data-in register is read by the host to get input

◦ The data-out register is written by the host to send output

◦ The status register contains bits which indicate device states

◦ The control register is written by the host to send command

 Methods to access devices with their addresses

◦ Direct I/O instructions

◦ Memory-mapped I/O

 Device data and command registers mapped to processor address

space

 Especially for large address spaces (graphics)

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 An example of Polling I/O
1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-
out register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when
transfer done

 Step 1 is busy-wait cycle to wait for I/O from device
◦ Reasonable if device is fast

◦ But inefficient if device slow

 CPU switches to other tasks?

 Might miss some data

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 CPU Interrupt-request line triggered by I/O device

◦ Checked by processor after each instruction

 Interrupt handler receives interrupts

◦ Masked to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct handler

◦ Context switch at start and end

◦ Based on priority

◦ Some nonmaskable

◦ Interrupt chaining if more than one device at same interrupt

number

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Interrupt vector table is used to identify which device

sent out the interrupt

◦ When multiple devices share an interrupt number, the handlers

are checked one by one

 Interrupt mechanism also used for exceptions

◦ Terminate process, crash system due to hardware error

◦ Page fault executes when memory access error

◦ System call executes via trap to trigger kernel to execute

request

 Multi-CPU systems can process interrupts concurrently

◦ If operating system designed to handle it

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

User Mode

Kernel Mode

Process 1 Process 1 Process 2 Process 2

System Call

System Call

Handler

Timer Interrupt

Interrupt

Handler
Scheduler

Device Interrupt

 Used to avoid programmed I/O (one or few bytes at a time)
for large data movement

 Requires DMA controller

 Bypasses CPU to transfer data directly between I/O device
and memory

 OS writes DMA command block into memory
◦ Source and destination addresses

◦ Read or write mode

◦ Count of bytes

◦ For each read/write:

 Device ready  DMA-request

 DMA controller complete  DMA-acknowledge

◦ When done, interrupts to signal completion

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 I/O system calls encapsulate device behaviors in generic classes

 Device-driver layer hides differences among I/O controllers from
kernel

 New devices talking already-implemented protocols need no
extra work

 Each OS has its own I/O subsystem structures and device driver
frameworks

 Unix ioctl() call to send arbitrary bits to a device control register
and data to device data register (called escape or back door)
◦ Which device

◦ Which command

◦ The pointer to the data

 Device characteristics vary in many dimensions

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Character Devices
◦ Sequential access

◦ Commands include get(), put()

◦ Examples include printer, sound board, terminal

◦ The same device may have both block and character oriented
interfaces

 Block Devices
◦ Commands include read, write, seek

◦ Raw I/O, direct I/O, or file-system access

 Raw I/O: no file system support, manage the device directly

 Direct I/O: with file system support but without buffering and locking

◦ Block size is from 512B to 4KB

◦ For example, disks are commonly implemented as block devices

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Varying enough from block and character to have own

interface

 Unix and Windows have socket (e.g., IP + port)

interface

◦ Separates network protocol from network operation

◦ Includes select() functionality

 select() returns that which sockets have data to be received

and which sockets are available for sending data now

 Approaches vary widely

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Hardware clocks and timers provide three basic

functions:

◦ Give the current time

◦ Give the elapsed time

◦ Set a timer to trigger operation X at time T

 Some high-frequency counters do not generate

interrupts, but they offers accurate measurements of

time intervals

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Blocking I/O

◦ The execution of the application is suspended until the

expected results are provided

 Nonblocking I/O

◦ Nonblocking call returns quickly, with a return value that

indicates how many bytes were transferred

 Asynchronous I/O

◦ Asynchronous call returns immediately, without waiting for the

I/O to complete

◦ The completion of the I/O at some future time is

communicated to the application

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

This information is used for the disk I/O

scheduling in Chapter 12

 Buffering ― store data in memory while transferring

between devices

◦ To cope with device speed mismatch

◦ To cope with device transfer size mismatch

◦ To maintain “copy semantics”

 The data might be modified after the copy is issued and before it

completes

 Double buffering – two data buffers

◦ It decouples the producer of data from the consumer, thus

relaxing timing requirements between them

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Consumer Producer 

 A cache is a region of fast memory that holds copies of
data

 Access to the cached copy is more efficient than access
to the original

 The difference between a buffer and a cache is that a
buffer may hold the only existing copy of a data item,
whereas a cache, by definition, holds a copy on faster
storage of an item that resides elsewhere.

 Caching and buffering are distinct functions, but
sometimes a region of memory can be used for both
purposes

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A spool is a buffer that holds multiple outputs for a

device, such as a printer, that cannot accept interleaved

data streams

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 OS can recover from disk read failures, device

unavailable, transient write failures

◦ Retry a read or write, for example

◦ Some systems more advanced – SCSI

 An additional sense code that states the category of failure

 Return an error number or code when I/O request fails

 I/O Protection:

◦ User process may accidentally or purposefully attempt to

disrupt normal operation via illegal I/O instructions

◦ All I/O instructions defined to be privileged

◦ I/O must be performed via system calls

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Set system call table

◦ At /arch/x86/kernel/ for older version, or at /arch/x86/syscalls for

new version

◦ Use assembly to map the name of a new system call to a number and

the vector

 Set header file to define the system call number

◦ For example, at unistd.h

◦ Let the C code know the mapping information of the system call

 Define system call prototype

◦ For example, at syscall.h

 Implement the system call

 Modify Makefile to compile the kernel with the changes

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Consider reading a file from disk for a process:
◦ Determine which device is holding the file

 Mount table  which device (major number, minor number)

◦ Translate name to device representation

 File system  where is the file in the disk

◦ Physically read data from disk into buffer

◦ Make data available to requesting process

◦ Return control to process

 Major number
◦ Each device driver is identified by a unique major number

 Minor number
◦ This uniquely identifies a particular instance of a device

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 I/O is a major factor in system performance:
◦ Demands CPU to execute device driver, kernel I/O code

◦ Context switches due to interrupts

◦ Data copying

◦ Network traffic especially stressful

 Improving I/O performance
◦ Reduce number of context switches

◦ Reduce data copying

◦ Reduce interrupts by using large transfers, smart controllers, polling

◦ Use DMA

◦ Use smarter hardware devices

◦ Balance CPU, memory, bus, and I/O performance for highest
throughput

◦ Move user-mode processes/daemons to kernel threads

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

