Operating System Practice

Che-Wel Chang
chewei@mail.cgu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Advanced Operating System
Concepts

oC
oC
o C
—>eC
oC
o C

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

a
a
a
Na
a

a

oter 10: File System

oter 11: Implementing File-Systems
oter 12: Mass-Storage Structure
oter 13: 1/0O Systems

nter 14: System Protection

nter 15: System Security

Study Items

» 1/O Hardware

» Application I/O Interface

» Kernel 1/0 Subsystem

» Transforming 1/O Requests to Hardware Operations
» Performance

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

|/O Hardware

» Incredible Variety of 1/0O Devices
o Storage
o Transmission
> Human-interface

» Common Concepts
o Port: connection point for device

o Bus: daisy chain or shared direct access

o Controller (host adapter): electronics that operate port, bus,
device

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

A Typical PC Bus Structure

2008

monitor processor
cache
ggﬁ?rgilf:r bri%%i/trrrg’clelr:rory memory SCSI controller
[} PCI bus)
IDE disk controller expansion bus keyboard
interface

@ @ {) expansion bus)
@ @ parallel
port

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang

Access to I/O Hardware

» Device registers which can be accessed by the host
o The data-in register is read by the host to get input
> The data-out register is written by the host to send output
o The status register contains bits which indicate device states
> The control register is written by the host to send command

» Methods to access devices with their addresses
o Direct I/O instructions
o Memory-mapped I/O

- Device data and command registers mapped to processor address
space

- Especially for large address spaces (graphics)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Device |/O Port Locations on

PCs (Partial)

I/O address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

p—
v
=
~

Polling

» An example of Polling 1/0
1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-
out register

3. Host sets command-ready bit
4. Controller sets busy bit, executes transfer
5. Controller clears busy bit, error bit, command-ready bit when
transfer done
» Step 1 1s busy-wait cycle to wait for 1/0O from device
- Reasonable if device Is fast
o But inefficient if device slow

- CPU switches to other tasks?
+ Might miss some data

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Interrupts

» CPU Interrupt-request line triggered by 1/O device
> Checked by processor after each instruction

» Interrupt handler receives interrupts
> Masked to ignore or delay some interrupts

» Interrupt vector to dispatch interrupt to correct handler
o Context switch at start and end
- Based on priority
> Some nonmaskable

o Interrupt chaining if more than one device at same interrupt
number

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Interrupt-Driven |/O Cycle

CPU 1/O controller
1

device driver initiates 1/O \
initiates 110

Y

CPU executing checks for
interrupts between instructions
I

¥ 4

CPU receiving interrupt, 4 input ready, output
transfers control to complete, or error
interrupt handler generates interrupt signal

7
E
interrupt handler

processes data,
returns from interrupt

A

6

CPU resumes
processing of
interrupted task

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang (

Interrupt Usage

» Interrupt vector table is used to identify which device
sent out the interrupt
> When multiple devices share an interrupt number, the handlers
are checked one by one
» Interrupt mechanism also used for exceptions
o Terminate process, crash system due to hardware error
- Page fault executes when memory access error
o System call executes via trap to trigger kernel to execute
request
» Multi-CPU systems can process interrupts concurrently
o If operating system designed to handle it

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informatic

Transitions between User and
Kernel Modes in Linux

Process 1 [Process 1] [Process 2 } [Process 2 }
User Mode
Kernel Mode
System Call Interrupt
Handler auler Handler
System Call Timer Interrupt Device Interrupt

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Direct Memory Access

» Used to avoid programmed 1/O (one or few bytes at a time)
for large data movement

» Requires DMA controller

» Bypasses CPU to transfer data directly between 1/O device
and memory

» OS writes DMA command block into memory
o Source and destination addresses

Read or write mode

Count of bytes

For each read/write:

- Device ready = DMA-request

- DMA controller complete > DMA-acknowledge

When done, interrupts to signal completion

o

o

o

(e}

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

DMA Transfer

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untilC =0 OMA/buS
u
6. when C = 0, DMA : — X
RISHUBECRY fosial ér;tri:g:gr + CPU memory bus memory | buffer
transfer completion
g PCI bus)
3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller
dE @

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, C

Kernel 1/O Structure

kernel
o
©
E kernel 1/0 subsystem
3
SCSI keyboard | mouse PCI bus floppy ATAPI
device device device X device device device
driver driver driver driver driver driver
SCSI keyboard | mouse PCI bus floppy ATAPI
device device device X device device device
5 controller | controller | controller controller | controller | controller
0 A A A
-(% y L 4
- ATAPI
scs| floppy- | | devices
davi keyboard| | mouse 8 aie PCl bus disk (disks
evices : ;
drives tapes,
drives)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Application I/O Interface

» 1/0O system calls encapsulate device behaviors in generic classes

» Device-driver layer hides differences among 1/O controllers from
kernel

» New devices talking already-implemented protocols need no
extra work

» Each OS has its own 1/0 subsystem structures and device driver
frameworks

» Unix 1octl() call to send arbitrary bits to a device control register
and data to device data register (called escape or back door)
o Which device

> Which command
o The pointer to the data

» Device characteristics vary in many dimensions

© All Rights Reserved, Prof. Che-Wei Chang, o ’ ' £ Ay 16

Department of Computer Science and Informatio

Characteristics of /0O Devices

aspect variation example
datatransiarmods character terminal
block disk
sequential modem
access method e CD-ROM
synchronous tape
L asynchronous keyboard
afann dedicated tape
g sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
read only CD-ROM
/O direction write only graphics controller
read-write disk
© All Rights Reserved, Prof. Che-Wei Chang, ; e
Department of Computer Science and Information Engineering i # ‘% §b 17

% . U e

Block and Character Devices

» Character Devices
o Sequential access
o Commands include get (), put ()
o Examples include printer, sound board, terminal
> The same device may have both block and character oriented
Interfaces
» Block Devices
o Commands include read, write, seek
o Raw I/O, direct 1/O, or file-system access
- Raw 1/O: no file system support, manage the device directly

- Direct I/O: with file system support but without buffering and locking
> Block size is from 512B to 4KB

o For example, disks are commonly implemented as block devices

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Network Devices

» Varying enough from block and character to have own
Interface

» Unix and Windows have socket (e.g., IP + port)
Interface

o Separates network protocol from network operation
o Includes select () functionality
- select () returns that which sockets have data to be received
and which sockets are available for sending data now

» Approaches vary widely

© All Rights Reserved, Prof. Che-Wei Chang, b : ‘ ’ f 4 2% 19

Department of Computer Science and Information En

Clocks and Timers

» Hardware clocks and timers provide three basic
functions:
> Glve the current time
> Glve the elapsed time
o Set a timer to trigger operation X at time T

» Some high-frequency counters do not generate

Interrupts, but they offers accurate measurements of
time intervals

© All Rights Reserved, Prof. Che-Wei Chang,

=B 40 2

Department of Computer Science and Information Enc

Blocking, Nonblocking, and
Asynchronous |/O

» Blocking I/O

> The execution of the application is suspended until the
expected results are provided

» Nonblocking 1/0O

> Nonblocking call returns quickly, with a return value that
Indicates how many bytes were transferred

» Asynchronous I/O

> Asynchronous call returns immediately, without waiting for the
1/0 to complete

> The completion of the 1/O at some future time is
communicated to the application

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

=i i sy 21

device: keyboard
status: idle

device: laser printer
status: busy

device: mouse
status: idle

device: disk unit 1
status: idle

device: disk unit 2
status: busy

Device-Status Table

request for

—>| laser printer

address: 38546
length: 1372

request for

Y

disk unit 2

file: xxx
operation: read
address: 43046
length: 20000

— L

request for
disk unit 2

file: yyy
operation: write
address: 03458
length: 500

This information is used for the disk 1/0
scheduling in Chapter 12

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Buffering

» Buffering — store data in memory while transferring
between devices
> To cope with device speed mismatch
> To cope with device transfer size mismatch
> To maintain “copy semantics”

- The data might be modified after the copy is issued and before it
completes

» Double buffering — two data buffers

o It decouples the producer of data from the consumer, thus
relaxing timing requirements between them

Producer -2

© All Rights Reserved, Prof. Che-Wei Chang,

Consumer =

Department of Computer Science and Information E

Caching

» A cache is a region of fast memory that holds copies of
data

» Access to the cached copy Is more efficient than access
to the original

» The difference between a buffer and a cache is that a
buffer may hold the only existing copy of a data item,
whereas a cache, by definition, holds a copy on faster
storage of an item that resides elsewhere.

» Caching and buffering are distinct functions, but
sometimes a region of memory can be used for both
purposes

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Spooling

» Aspool is a buffer that holds multiple outputs for a
device, such as a printer, that cannot accept interleaved
data streams

11

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Error Handling

» OS can recover from disk read failures, device
unavailable, transient write failures
- Retry a read or write, for example
> Some systems more advanced — SCSI
An additional sense code that states the category of failure

» Return an error number or code when 1/O request fails
» 1/O Protection:

o User process may accidentally or purposefully attempt to
disrupt normal operation via illegal 1/O instructions
> All 1/0O instructions defined to be privileged

o 1/O must be performed via system calls

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informatio

= LEit a2

System Call for 1/0

cade n kernel

trap to perform /O
monitor

©,

return
to user

user
program

system call ne—

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Cha

Build a System Call in Linux

Set system call table

o At /arch/x86/kernel/ for older version, or at /arch/x86/syscalls for
new version

o Use assembly to map the name of a new system call to a number and
the vector

Set header file to define the system call number

> For example, at unistd.h
o Let the C code know the mapping information of the system call

Define system call prototype
o For example, at syscall.h

Implement the system call
Modify Makefile to compile the kernel with the changes

v

v

v

v Vv

© All Rights Reserved, Prof. Che-Wei Chang, ™ b - ;
Department of Computer Science and Information . A it 4 3% 28

Transforming I/O Requests to
Hardware Operations

» Consider reading a file from disk for a process:
> Determine which device iIs holding the file
Mount table - which device (major number, minor number)
o Translate name to device representation
File system - where is the file in the disk
o Physically read data from disk into buffer
> Make data available to requesting process
o Return control to process

» Major number
o Each device driver Is identified by a unigue major number

» Minor number
> This uniquely identifies a particular instance of a device

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informatic

Life Cycle of An I/O Request

user 1/O completed,
request 1/O process input data available, or
output completed
' f
el return from system call
kernel

transfer data
VO subsystem | (it appropriate) to process,
yes return completion

or error code

h

can already
satisfy request?

send request to device
driver, block process if kernel
appropriate I/O subsystem
process request, issue : :
commands to controller, device - o?n?firtgén?ngirgg{]evs?at :
configure controller to driver R ’IIO S
block until interrupted g 4

4

) receive interrupt, store
interrupt data in device-driver buffer

device-controller commands
handler if input, signal to unblock
device driver
interrupt
A 4 |

device

~ monitor device, controller | 10 completed,

interrupt when 1/O generate interrupt

completed

| time E}

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

|/O Performance

» 1/O Is a major factor in system performance:
> Demands CPU to execute device driver, kernel 1/0O code
o Context switches due to interrupts
o Data copying
o Network traffic especially stressful

» Improving 1/O performance
o Reduce number of context switches
> Reduce data copying
o Reduce interrupts by using large transfers, smart controllers, polling
o Use DMA
o Use smarter hardware devices

- Balance CPU, memory, bus, and I/O performance for highest
throughput

> Move user-mode processes/daemons to kernel threads

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Device-Functionality Progression

new algorithm

application code

»

kernel code

device-driver code

increased flexibility

device-controller code (hardware)

reased time (generations)

ﬁ increased efficiency

“increased abstraction

increased development cost

device code (hardware)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang G

