
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang, Department of Computer Science and Information

Engineering, Chang Gung University

● Introduction to Embedded System

● Tools and Techniques to Build Embedded Systems

● Implementation on Embedded System Evaluation Boards

● Concepts and Implementation of File System

● Storage Management and I/O Devices

● System Protection and Security

● Concepts of the Linux Kernel

● Real-Time System Knowledge

●Android Programing on Android Emulator

 Linux is free, both in source code and cost, due to the

GPL

 Linux is fully customizable in all its components

 Linux can runs on low-end, inexpensive hardware

platforms, e.g., one with 4 MB RAM

 Linux systems are stable

 The Linux kernel can be very small and compact

 Linux is highly compatible with many common

applications and functions

 Linux is well-supported

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Monolithic kernel

◦ The entire operating system is working in kernel space

◦ All parts of the kernel share the same kernel-level memory

◦ Kernel components might affect other components

◦ The Linux kernel is an example

 Microkernel

◦ Kernel functions are partitioned into components

◦ Communications are via inter process communication (IPC)

protocol

◦ The L4 microkernel is an example

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Hardware Platform Hardware Platform

Device Drivers

Virtual Memory, Dispatcher

Scheduler, IPC, File System, …

IPC, Virtual Memory, Scheduler

APPs

APPs
Device

Drivers

File

Server
…

Monolithic Kernel Microkernel

User Mode

Kernel

Mode

 Virtual Machines on an Host OS

◦ For example: VMWare Workstation, Oracle VM VirtualBox

◦ Easy to use and install

 Hypervisors on a Hardware Platform

◦ For example: Xen

◦ High perform with a very slim software layer

 Microkernel

◦ For example: OKL4 Microkernel

◦ Many functions to support the routines of an OS

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 1965: Multiplexed Information and Computing Service

(Multics)

◦ It is a mainframe timesharing operating system

◦ It is developed by Bell Lab, MIT and GE

◦ It shows the vision and concept of operating systems

 1973: Uniplexed Information and Computing System

(UNIX)

◦ It has been re-written in C to be portable and quite popular

◦ It became closed source in 1979

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 1984: Minix
◦ It is on X86 architecture

◦ It is originally for education

 1991: Linux 0.02
◦ It runs on X86

◦ It is open source

◦ It can be compiled by gcc

◦ Everyone can contribute new code to it

Hello everybody out there using minix- I'm doing a (free)
operation system (just a hobby, won't be big and professional
like gnu) for 386(486) AT clones.

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Monolithic kernel
◦ It is large and complex
◦ Most commercial Unix variants are monolithic

 Dynamically linked module
◦ It is able to automatically load and unload modules on demand

 Kernel threading
◦ A kernel thread is an execution context that can be independently

scheduled
◦ Context switches between kernel threads are usually much less

expensive than context switches between ordinary processes

 Multithreaded application support
 Preemptive kernel
 Multiprocessor support
 Filesystem support

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Linux is a multiuser, multitasking system with a full set

of UNIX-compatible tools

 Its file system adheres to traditional UNIX semantics,

and it fully implements the standard UNIX networking

model

 Main design goals are speed, efficiency, and

standardization

 Linux is designed to be compliant with the relevant

POSIX documents

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Sections of kernel code that can be compiled, loaded, and
unloaded independent of the rest of the kernel

 A kernel module may typically implement a device driver, a
file system, or a networking protocol

 The module interface allows third parties to write and
distribute, on their own terms, device drivers or file systems
that could not be distributed under the GPL

 Kernel modules allow a Linux system to be set up with a
standard, minimal kernel, without any extra device drivers
built in

 Three components to Linux module support
◦ module management
◦ driver registration
◦ conflict resolution

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Supports loading modules into memory and letting

them talk to the rest of the kernel

 Module loading is split into two separate sections:

◦ Managing sections of module code in kernel memory

◦ Handling symbols that modules are allowed to reference

 The module requestor manages currently unloaded

modules

◦ It also regularly queries the kernel to see whether a

dynamically loaded module is still in use

 Unload a module when it is no longer actively needed

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Allows modules to tell the rest of the kernel that a new

driver has become available

 The kernel maintains dynamic tables of all known

drivers, and provides a set of routines to allow drivers

to be added to or removed from these tables at any time

 Registration tables include the following items:

◦ Device drivers

◦ File systems

◦ Network protocols

◦ Binary format

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Major number

◦ Each device driver is identified by a unique major number

◦ This number is assigned by the Linux Device Registrar

 Minor number

◦ This uniquely identifies a particular instance of a device

◦ If there are three devices with the same device driver, they will

have the same major number but different minor numbers

 mknod [device name][bcp] [Major] [Minor]

◦ b: block devices

◦ c: character devices

◦ p: a FIFO file

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Linux process management separates the creation of
processes and the running of a new program into two
distinct operations
◦ The fork() system call creates a new process

◦ A new program is run after a call to exec()

 A process encompasses all the information that the
operating system must maintain to track the context of
a single execution of a single program

 Process properties fall into three groups:
◦ Identity

◦ Environment

◦ Context

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Process ID (PID)
◦ The unique identifier for the process

◦ It is used to specify processes to the operating system when an
application makes a system call to signal, modify, or wait for
another process

 Credentials
◦ Each process must have an associated user ID and one or more

group IDs that determine the process’s rights to access system
resources and files

 Namespace
◦ Each process is associated with a specific view of the

filesystem hierarchy

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The process’s environment is inherited from its parent

◦ The argument vector lists the command-line arguments used to

invoke the running program; conventionally starts with the

name of the program itself

◦ The environment vector is a list of “NAME=VALUE” pairs

that associates named environment variables with arbitrary

textual values

 Passing environment variables among processes and

inheriting variables by a process’s children are flexible

 The environment-variable mechanism provides a

customization of the operating system for each process

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The (constantly changing) state of a running program at

any point in time

 The scheduling context is the most important part of

the process context; it is the information that the

scheduler needs to suspend and restart the process

 The signal-handler table defines the routine in the

process’s address space to be called when specific

signals arrive

 The virtual-memory context of a process describes the

full contents of the its private address space

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Kernel synchronization requires a framework that will

allow the kernel’s critical sections to run without

interruption by another critical section

◦ Big kernel lock

◦ The kernel guarantees that it can proceed without the risk of

concurrent access of shared data structures

 Interrupt service routines are separated into a top half

and a bottom half

◦ The top half is a normal interrupt service routine, and runs with

recursive interrupts disabled

◦ The bottom half runs with all interrupts enabled

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Each level may be interrupted by code running at a
higher level, but will never be interrupted by code
running at the same or a lower level.

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Linux uses two process-scheduling algorithms

◦ A time-sharing algorithm

◦ A real-time algorithm for tasks where absolute priorities are

more important than fairness

 For time-sharing processes, Linux uses a prioritized,

credit based algorithm

 Linux implements the FIFO and round-robin real-time

scheduling classes

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Linux maintains a table of functions for loading programs

◦ it gives each function the opportunity to try loading the given file

when an exec system call is made

 The registration of multiple loader routines allows Linux to

support both the ELF and a.out binary formats

 Initially, binary-file pages are mapped into virtual memory

◦ Only when a program tries to access a given page will a page fault

result in that page being loaded into physical memory

 An ELF-format binary file consists of a header followed by

several page-aligned sections

◦ The ELF loader works by reading the header and mapping the

sections of the file into separate regions of virtual memory

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The proc file system does not store data, rather, its

contents are computed on demand according to user file

I/O requests

 When data is read from one of these files, proc collects

the appropriate information, formats it into text form

and places it into the requesting process’s read buffer

 cat /proc/cpuinfo will get the CPU information

◦ vendor ID

◦ CPU family, CPU cores

◦ cache size, TLB size

◦ …

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A camera periodically takes a photo

 The image recognition result will be produced before
the next period

 If there is an obstacle, the train automatically brakes

Camera Range: 400m

Max Seed: 50m/s

Braking: -12.5m/s2

Distance of a Period = (400 -100)/2 = 150m

Distance to Stop

25x(50/12.5)=100m

Period

Time of a Period = 150/50 = 3s

Period 100m

Event Detection Recognition Stop

150m 150m

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Playing piano: 2 days per 4 days

Playing chess : 1.5 days per 3 days

 Case 1: Playing piano is always more important

0 1 2 3 4 5 6

 Case 2: Doing whatever is more urgent

0 1 2 3 4 5 6

 Processes are independent

 Processes are all periodic

 The deadline of a request is its next request time

 A scheduler consists of a priority assignment policy and

a priority-driven scheduling mechanism

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Reference: C.L. Liu and James. W. Layland, “Scheduling Algorithms for Multiprogramming in a

Hard Real-Time Environment,” JACM, Vol. 20, No.1, January 1973, pp. 46-61

 The response time of a request for a process is the time span

between the request and the end of the response to that request

 A critical instant of a process is an instant at which a request of

that process has the longest response time

 A critical interval for a process is the time interval between the

start of a critical instant and the deadline of the corresponding

request of the process

➔A critical instant for any process occurs whenever the process is

requested simultaneously with requests for all higher priority processes

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

An observation: If a process can complete its execution

within its critical interval, it is schedulable at all time!

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A static priority is assigned to each task based on the inverse
of its period
◦ A task with shorter period ➔ higher priority

◦ A task with longer period ➔ lower priority

◦ For example:

 P1 has its period 50 and execution time 20

 P2 has its period 100 and execution time 37

➔P1 is assigned a higher priority than P2

 The rate monotonic (RM) priority assignment assigns

processes priorities according to their request rates

◦ If a feasible fixed priority assignment exists for some process set, then

the rate monotonic priority assignment is feasible for that process set

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Proof. Exchange the priorities of two tasks if their priorities are out of RMS order.

Period: 10

Priority: 1

Period: 23

Priority: 2

Period: 15

Priority: 3

Task A Task B Task C

If it is feasible

Period: 10

Priority: 1

Period: 23

Priority: 3

Period: 15

Priority: 2

Task A Task BTask C

RM must be feasible

The optimal fixed priority assignment

 Dynamic priorities are assigned according to deadlines

◦ The earlier the deadline, the higher the priority

◦ The later the deadline, the lower the priority

◦ For example:

 P1 has its period 50 and execution time 25

 P2 has its period 80 and execution time 35

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Rate Monotonic
Miss Deadline

Earliest Deadline First
Meet Deadline

 For a task ti d with the period Pi and the execution time Ci,

the utilization Ui of ti is defined as Ui =
Ci

Pi

 For a real-time task set T the total utilization of the task set
is σti∈𝐓

Ui

 If σti∈𝐓
Ui ≤ 69%, Rate Monotonic Scheduling can schedule all

tasks in T to meet all deadlines
◦ More precisely, for n tasks, the i-th task can meet deadline if

 If and only if σti∈𝐓
Ui ≤ 100%, Earliest Deadline First Scheduling

can schedule all tasks in T to meet all deadlines

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Reference: C.L. Liu and James. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment,”

JACM, Vol. 20, No.1, January 1973, pp. 46-61

()12 /1

1

−
=

i
i

j j

j
i

p

c

 Context Switching
◦ Needed either when a process is preempted by another process,

or when a process completes its execution

◦ Stack Discipline

If process A preempts process B, process A must

complete before process B can resume

If it is obeyed, charge the cost of preemption (context
switching cost) once to the preempting process!

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

A

B

B BA

 The least slack time algorithm (LST), which assigns processes
priorities inversely proportional to their slack times is also optimal if
context switching cost can be ignored
◦ The slack time of a process is d(t) - t - c(t)

 t: current time

 d(t): deadline

 c(t): remaining execution time

◦ An example
 The time t = 0, two task have the same deadline 20

 Task 1 has c(t) = 7, and task 2 has c(t) = 8

35
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Task 2 Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

Task 2 Task 1

So many context switches!

t1➔ 13

t2➔ 12

t1➔ 11

t2➔ 12

t1➔ 11

t2➔ 10

t1➔ 9

t2➔ 10

 Processes might share non-preemptible resources or

have precedence constraints

 Papers for discussion:

◦ L. Sha, R. Rajkumar, J.P. Lehoczky, “Priority Inheritance

Protocols: An Approach to Real-Time Synchronization,” IEEE

Transactions on Computers, 1990.

◦ A.K. Mok, “The Design of Real-Time Programming Systems

Based on Process Models,” IEEE Real-Time Systems

Symposium, Dec 1994.

37
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Motivation

◦ Can we find an efficient way to analyze the schedulability of a

process set (systematically)

◦ What kinds of restrictions on the use of communication

primitives are needed so as to efficiently solve the restricted

scheduling problem

◦ How can we control the priority inversion problem

◦ The lengths of critical sections might be quite different

38
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Blocking: a higher-priority process is forced to wait for

the execution of a lower-priority process

 Preemption: a low-priority process is forced to wait for

the execution of a high-priority process

39
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

τ1

τ3

lock S unlock S

lock S lock S

Preempted!

Blocked!

 When there are a lot of tasks having priority between

that of τ1 and τ3, there are a lot of priority inversions

40
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

τ1

τ3

lock S unlock S

lock S lock S

τ2,1

τ2,2

τ2,3

Preemption!?

 Priority-Driven Scheduling
◦ The process which has the highest priority among the ready

processes is assigned the processor

 Synchronization
◦ Process τi must obtain the lock on the semaphore guarding a

critical section before τi enters the critical section
◦ If τi obtains the required lock, τi enters the corresponding critical

section; otherwise, τi is blocked and said to be blocked by the
process holds the lock on the corresponding semaphore

◦ Once τi exits a critical section, τi unlocks the corresponding
semaphore and makes its blocked processes ready

 Priority Inheritance
◦ If a process τi blocks higher priority processes, τi inherits the

highest priority of the process blocked by τi

◦ Priority inheritance is transitive

41
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 No priority inversion

 A semaphore S can be used to cause inheritance

blocking to task J only if S is accessed by a task

which has a priority lower than that of J and might be

accessed by a task which has a priority equal to or

higher than that of J.

42
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

S

S

τ3
S

τ2

τ1

lock S

 A chain of blocking is possible

 A deadlock can be formed

43
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

τ3 S1

τ2 S2

τ1

Request S2

Request S1

τ1

τ2τ3

 The priority ceiling of a semaphore is the priority of the

highest priority task that may lock the semaphore

 The Basic Priority Inheritance Protocol + Priority

Ceiling

 A task J may successfully lock a semaphore S if S is

available, and the priority of J is higher than the highest

priority ceiling of all semaphores currently locked by

tasks other than J

 Priority inheritance is transitive

44
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The priority ceiling protocol prevents transitive
blockings

 The Priority ceiling Protocol prevents deadlock

 No job can be blocked for more than one critical
section of any lower priority job

 A set of n periodic tasks under the priority ceiling
protocol can be scheduled by the rate monotonic
algorithm if the following conditions are satisfied:

where Bi is the worst-case blocking time for ti

45
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

,i ,1 ni ()12 /1
1

1

−
+

+
−

=

i

i

ii
i

j j

j
i

p

Bc

p

c

 Consider 4 tasks, t1, t2, t3, and t4 which have priorities x1, x2, x3,
and x4, respectively, and assume x1>x2>x3>x4 (x1 is the highest
priority). After we profile the programs of the 4 tasks, we have
the following information:
• Task t1 will lock semaphore S1 for 3ms.

• Task t2 will lock semaphore S2 for 10ms and lock semaphore S1 for 13ms.

• Task t3 will lock semaphore S2 for 8ms and lock semaphore S3 for 15ms.

• Task t4 will lock semaphore S1 for 15ms and lock semaphore S3 for 23ms.

• Please derive the priority ceiling of each semaphore. If priority ceiling
protocol is used to manage the semaphore locking, please derive the
worst-case blocking time of each task.

Answer: Priority ceilings: S1➔x1, S2➔x2, S3➔x3.
Worst-case blocking times: t1➔15ms, t2➔15ms, t3➔23ms, t4➔0ms.

46
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

47
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

t1

Time
t2

S2

blocked by τ2

(attempt to lock S1)

S1, S2

t2

S2

t
4

priority inheritance

unlock S2 and reset priority

S1 S1, S2

t0

t3

S0

S2 S2

t5 t6t1

S1

t7 t8

S0 locked S0 unlocked

S2 locked

S1 locked S1 unlocked

S2 locked S2 unlocked

S1 locked S1 unlocked

t0

48
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

t0

t1

Time
t2

S1 S1

t2

S1

t4

Avoidance blocking occurs!

S2

S2 S1, S2

t6

S1, S2 S1, S2

t1t0 t3 t5 t7 t8

S2

blocked by τ2

(attempt to lock S2)

S2 locked S2 unlocked

blocked by τ2

(attempt to lock S2)

S2 locked S2 unlocked

S1 locked S1 unlocked

S1 locked S2 locked S2 unlocked S1 unlocked

Task t1: C1=20, P1=100, U1=0.2

Task t2: C2=40, P2=150, U2=0.267

Task t3: C3=100, P3=350, U3=0.286

 Total utilization: 75.3% ≤ 3 2
1

3 − 1 = 77.9%

 24.7% of the CPU is usable for lower-priority

background computation

50
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Task t1: C1=40, P1=100, U1=0.4

Task t2: C2=40, P2=150, U2=0.267

Task t3: C3=100, P3=350, U3=0.286

 The utilization of the first two tasks: 66.7% ≤ 2 2
1

2 − 1 = 82.8%

 The total utilization:95.3% > 3 2
1

3 − 1 = 77.9%

51
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A RMA Example:
◦ t1(20,100), t2(30,150), t3(80, 210), t4(100,400)

◦ t1
 c1 <= 100

◦ t2

 c1 + c2 <= 100 or

 2c1 + c2 <= 150

◦ t3

 c1 + c2 + c3 <= 100 or

 2c1 + c2 + c3 <= 150 or

 2c1 + 2c2 + c3 <= 200 or

 3c1 + 2c2 + c3 <= 210

◦ t4

 c1 + c2 + c3 + c4 <= 100 or

 2c1 + c2 + c3 + c4 <= 150 or

 …

52
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

50 100 150 200

50

100

150

200

 A RMA Example with blocking time:
◦ t1(20,100), t2(30,150), t3(80, 210), t4(100,400)

◦ t1: (S1, 5)

◦ t2: (S2, 15)

◦ t3: (S1, 10), (S3, 5)

◦ t4: (S2, 5), (S3, 20)

 What is the priority ceiling of each semaphore?
◦ S1: t1, S2: t2, S3: t3

 When PCP is adopted (block once), what is the
blocking time of each task?
◦ t1: 10, t2: 10, t3: 20, t4: 0

53
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A RMA Example with blocking time:
◦ For each task, we have to consider the execution time, period, and

blocking time
◦ t1(20,100,10), t2(30,150,10), t3(80, 210,20), t4(100,400,0)
◦ t1

 b1 + c1 <= 100

◦ t2

 b2 + c1 + c2 <= 100 or

 b2 + 2c1 + c2 <= 150

◦ t3

 b3 + c1 + c2 + c3 <= 100 or

 b3 + 2c1 + c2 + c3 <= 150 or

 b3 + 2c1 + 2c2 + c3 <= 200 or

 b3 + 3c1 + 2c2 + c3 <= 210

◦ t4

 …

54
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Aperiodic tasks run at irregular intervals

 Aperiodic deadlines

◦ Hard deadline: minimum inter-arrival time

◦ Soft deadline: best average response time

 Services such as

◦ User requests

◦ Device interrupts

◦ …

56
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Polling Server~ Average Response Time = 50 units

 Interrupt Server ~ Average Response Time = 1 unit

57
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

100 200 300

65 98 6

100 200 300

 Polling Server: the average response time is long

 Interrupt Server: the computing time of aperiodic tasks

is difficult to limited

 Deferrable Server

◦ In each period, a deferrable server has a execution budget

◦ When execution budget is used up, server execution drops to a

lower (background) priority

58
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

100 200 300

 Deferrable Server might consume two times of the

execution budget in short time

 Sporadic Server

◦ Replenishment occurs one “period” after the start of usage

59
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

100 200 300

100 200 300

100

 A sporadic server differs from a deferrable server in its

replenishment policy:

◦ A 100 ms deferrable server replenishes its execution budget

every 100 ms, no matter when the execution budget is used

◦ The affect of a sporadic server on lower priority tasks is no

worse than a periodic task with the same period and execution

time

60
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A sporadic server has a replenishment period 5 and an

execution budget 2

 Each event consumes the execution 1

 Events arrive at 1, 3, 4, 8, 9

61
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

0 5 10 15

1

2Execution

Budget

Time

 For a sporadic server has a replenishment period X and
an execution budget Y
◦ Given a set of sporadic tasks, If

 Each of the aperiodic tasks has its minimum inter-arrival time no
less than X

 The total execution of the task set is no more than Y

◦ All sporadic tasks can meet the deadline constraints

 When a system consists of periodic tasks and sporadic
servers
◦ A sporadic server with replenishment period X and an

execution budget Y can be consider as a periodic task with a
period X and an execution time Y

◦ The system can then use analysis scheme of RM or EDF

62
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

