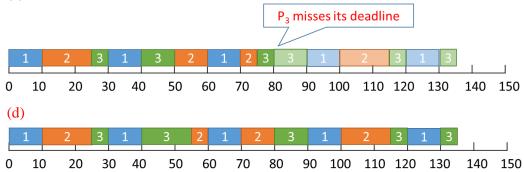
長庚大學113學年度第二學期 作業系統實務 第二次小考 (總分100)


系級: 姓名: 學號:

1. (60%) Please briefly explain (a) the **Rate Monotonic** (**RM**) scheduling algorithm and (b) the **Earliest Deadline First** (**EDF**) scheduling algorithm for real-time task scheduling. For three periodic tasks P₁, P₂ and P₃, P₁ has its period 30 and execution time 10, P₂ has its period 50 and execution time 15, and P₃ has its period 75 and execution time 20. Assume P₁, P₂ and P₃ are ready at time 0. Please draw the scheduling results from time 0 to 150 for (c) the RM scheduling and (d) the EDF scheduling.

Answer: (a) A task with a shorter period will be assigned a higher priority.

(b) A task with the earliest deadline will be assigned the highest priority.

(c)

- 2. (40%) Consider 4 tasks, t_1 , t_2 , t_3 , and t_4 which have priorities x_1 , x_2 , x_3 , and x_4 , respectively, and assume $x_1>x_2>x_3>x_4$ (x_1 is the highest priority). After we profiled the programs of the 4 tasks, we have the following information:
 - Task t_1 will lock semaphore S_1 for 5 ms.
 - Task t_2 will lock semaphore S_1 for 20 ms and lock semaphore S_2 for 15 ms.
 - Task t₃ will lock semaphore S₂ for 10ms and lock semaphore S₃ for 25ms.
 - Task t₄ will lock semaphore S₃ for 30ms and lock semaphore S₄ for 35ms.
 - (a) Please derive the priority ceiling of each semaphore. If the priority ceiling protocol is used to manage the semaphore locking, (b) please derive the worst-case blocking time of each task. You have to provide the reason to support each of your answers.

Answer: (a) Priority ceilings: S_1 : x_1 , S_2 : x_2 , S_3 : x_3

(b) Worst-case blocking times: t₁: 20 ms, t₂: 10 ms, t₃: 30 ms, t₄: 0 ms.